Errata

Title & Document Type: 4277A LCZ Meter Operating and Service Manual

Manual Part Number: 04277-90000

Revision Date: March 1984

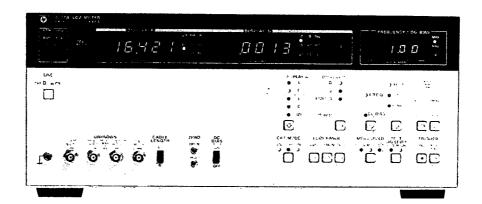
HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

4277A LCZ METER

MANUAL CHANGES

HP 4277A LCZ Meter

Operation and Service Manual

MANUAL IDENTIFICATION

Model Number: HP 4277A Date Printed: January 1984 Part Number: 04277-90000

This supplement contains information for correcting manual errors and for adapting the manual to newer instruments that contains improvements or modifications not documented in the existing manual.

and below

To use this supplement
1. Make all ERRATA corrections
2. Make all appropriate serial-number-related changes listed below

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES
All	1
2515J02256 and above	2
2515J02255	3

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES

NOTE

Manual change supplement are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Date/Div: July,19XX/33 Page 1 of 2

- CHANGE 1

Page X-X, Section 1 Title, Section 2 Title, Section 3 Title

Change Information

Change	Page	Note	Reference Designator	HP Part Number	Description
1		►C			
	6-15		A5U1	1858-0149	TRANSISTOR ARRAY
Į.			A5U5	1858-0149	TRANSISTOR ARRAY
		1	A5U6	1858-0149	TRANSISTOR ARRAY
i		l l	A5U7	1858-0149	TRANSISTOR ARRAY
	6-16		14	04276-61801	LINE FILTER ASSY
2	6-16	▶ C	A6BT1	1420-0362	Ni-Cd Battery
	6-3	► C	A1R6	0757-0280	
3	6-16	▶c	A6BT1	1420-0362	Ni-Cd Battery
		► A		1400-0757	Battery Clamp (see Service Note 4276A-05)

►: New Item

C: Change

D: Delete

A: Add

Change part numbers as following table.

Change	Former Part Number	New Part Number	Description	Parent Assembly	Qty.
1	0180-1077	0180-4402		04275-66501 04275-66503	5 7

MANUAL CHANGES

4277A

LCZ METER

MANUAL IDENTIFICATION

Model Number: 4277A

JAN. 1984

Date Printed: Part Number:

04277-90000

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections.

Make all appropriate serial number related changes indicated in the tables below.

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	
2517J01271 and above	1			
2228J01030 and above	2			
2515J01618 and above	3			

► NEW ITEM

ERRATA

Page 3-49, Figure 3-22, External Trigger Pulse: Change the Input Level limits to read as follows.

Input Levels: $V_{IL} \le 0.4V_{2.4V} \le V_{IH} \le 5V_{3.4V}$

Page 3-74, Figure 3-32, Internal DC Bias Voltage Monitor (Sheet 1 of 2): In item 1. (i), change the equation for R to read as follows.

$$R_z = (V_K - V_H) \cdot R_0 / (V_H - V_L)$$

Page 4-A, Table 4-1, Recommended Equipment (Sheet 1 of 2): Change the Recommended Model for the 61cm test cable from HP 11170B to PN 8120-1839.

Change the Recommended Model for the 30cm test cable from HP 11170A to PN 8220-1838.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Date/Div: Aug. 14, 1986/33

Page 1 of 3

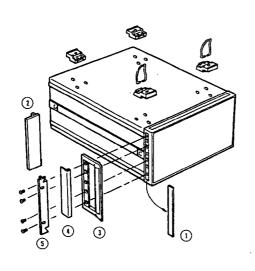
- Pages 4-6 and 4-7, Paragraphs 4-9, Test Frequency Accuracy Test, and 4-11, Test Signal Level Accuracy Test:

 Under EQUIPMENT, change the model number of the BNC-to-BNC cable from HP 11170A to PN 8120-1838.
- Page 5-8, Paragraph 5-21, Test Signal Level Adjustment: Under EQUIPMENT, change the model number of the BNC-to-BNC cable from HP 11170B to PN 8120-1839.
- Page 6-7, Table 6-3, Replaceable Parts: Change the part numbers and descriptions of A2Q6 through Q10 to read as follows.

Q6 and Q10: 1854-1041, TRANSISTOR NPN Q2, Q3, and Q4: 1855-0571, TRANSISTOR FET

- Page 6-18, Table 6-3, Replaceable Parts: Change the part number of item 50 to 1510-0130.
- Page 8-65, Figure 8-41, Al LOGIC Board Troubleshooting Flow Diagram: Delete pin 23 and the associated signature from Signature Set 8-1.
- Page 8-67, Figure 8-41, Al LOGIC Board Troubleshooting Flow Diagram: In Signature Set 9-2, change the signature of A22U2 pin 15 to 810P.

CHANGE 1


Page 2-5, Figure 2-3;

Change the Figure as shown on the next page.

CHANGE	Page	NOTE	Reference Designation	HP Part Number	Description
2	6-6	▶ C	A2C97	0160-4833	CAPACITOR-FXD .022µF 10%
3	6-6	► C	A2C100	0160-5493	CAPACITOR-FXD .1µF 10% 63V

▶: New Item A: Add D: Delete C: Change

Option	Description	Kit Part Number
907	Handle Kit	5061-9690
908	Rack Flange Kit	5061-9678
909	Rack Flange & Handle Kit	5061-9684

- Remove adhesive-backed trim strips (1) from side at right and left front of instrument.
- 2. HANDLE INSTALLATION: Attach front handle (3) to sides at right and left front of instrument with screws provided and attach trim (4) to handle.
- RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided.
- 4. HANDLE AND RACK MOUNTING: Attach front handle (3) and rack mount flange (5) together to sides at right and left front of instrument with screws provided.
- 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar).

Figure 2-3. Rack Mount Kit.

MANUAL CHANGES

HP 4277A

LCZ Meter

MANUAL IDENTIFICATION -

Model Number: HP 4277A Date Printed: Not Specified Part Number: 04277-90000

This supplement contains information for correcting manual errors and for adapting the manual to newer instruments that contain improvements or modifications not documented in the existing manual.

To use this supplement
1. Make all ERRATA corrections
2. Make all appropriate serial-number-related changes listed below

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES
All	1		

► New Item

Some LCR components used in the HP 4277A have been standardized to decrease the number of similar components. For example, if a single model uses both $6.8k\Omega$ 5% and $6.81k\Omega$ 1% resistors, the standard resistor will be $6.81k\Omega$ 1%.

Change the part numbers in the Replaceable Parts List of Section 6 as given in the table on the next page.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Date/Div: April 1, 1987/33

Page: 1 of 2

Table 1. Parts Standardization Change

	-	At	Dort
Old	,	New	
Part Number	Description	Part Number	Description
0683-1005	Resistor 10Ω 5%	0757-0346	Resistor 10Ω 1%
0683-1015	Resistor 100Ω 5%	0757-0401	Resistor 100Ω 1%
0683-1025	Resistor 1kΩ 5%	0757-0280	Resistor 1kΩ 1%
0683-1035	Resistor 10kΩ 5%	0757-0442	Resistor 10kΩ 1%
0683-1045	Resistor 100kΩ 5%	0757-0465	Resistor 100kΩ 1%
0683-1055	Resistor 1MΩ 5%	0698-8827	Resistor 1MΩ 1%
0683-1515	Resistor 150Ω 5%	0698-3438	Resistor 147Ω 1%
0683-1525	Resistor 1.5kΩ 5%	0757-1094	Resistor 1.47kΩ 1%
0683-1835	Resistor 18kΩ 5%	0698-3136	Resistor 17.8kΩ 1%
0683-2215	Resistor 220Ω 5%	0698-3441	Resistor 215Ω 1%
0683-2225	Resistor 2.2kΩ 5%	0698-0084	Resistor 2.15kΩ 1%
0683-2235	Resistor 22kΩ 5%	0757-0199	Resistor 21.5kΩ 1%
0683-2245	Resistor 220kΩ 5%	0698-3454	Resistor 215kΩ 1%
0683-2715	Resistor 270Ω 5%	0698-3132	Resistor 261Ω 1%
0683-2725	Resistor 2.7kΩ 5%	0698-0085	Resistor 2.61kΩ 1%
0683-2735	Resistor 27kΩ 5%	0698-3159	Resistor 26.1kΩ 1%
0683-3305	Resistor 33Ω 5%	0757-0180	Resistor 31.6Ω 1%
0683-3315	Resistor 330Ω 5%	0698-3444	Resistor 316Ω 1%
0683-3325	Resistor 3.3kΩ 5%	0757-0279	Resistor 3.16kΩ 1%
0683-3335	Resistor 33kΩ 5%	0698-3160	Resistor 31.6kΩ 1%
0683-4705	Resistor 47Ω 5%	0698-4037	Resistor 46.4Ω 1%
0683-4715	Resistor 470Ω 5%	0698-0082	Resistor 464Ω 1%
0683-4725	Resistor 4.7kΩ 5%	0698-3155	Resistor 4.64kΩ 1%
0683-4735	Resistor 47kΩ 5%	0698-3162	Resistor 46.4kΩ 1%
0683-4745	Resistor 470kΩ 5%	0698-3260	Resistor 464kΩ 1%
0683-5605	Resistor 56Ω 5%	0698-0395	Resistor 56.2Ω 1%
0683-5615	Resistor 560Ω 5%	0698-0417	Resistor 562Ω 1%
0683-5635	Resistor 56kΩ 5%	0698-0459	Resistor 56.2kΩ 1%
0683-6805	Resistor 68Ω 5%	0757-0397	Resistor 68.1Ω 1%
0683-6825	Resistor 6.8kΩ 5%	0757-0439	Resistor 6.81kΩ 1%

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings given elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and the mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

 \sim

Alternating current (power line).

===

Direct current (power line).

 $\overline{}$

Alternating or direct current (power line).

WARNING

A WARNING denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

Note

A Note denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight.

Herstellerbescheinigung

Hiermit wird bescheinigt, daß das Gerät HP 4277A (LCZ Meter) in Übereinstimmung mit den Bestimmungen von Postverfügung 1046/84 funkentstört ist.

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt.

Aum: Werden Meß- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Meßaufbauten verwendet, so ist vom Betreiber sicherzustellen, daß die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.

Manufacturer's Declaration

This is to certify that this product, the HP 4277A LCZ Meter, meets the radio frequency interference requirements of directive 1046/84. The German Bundespost has been notified that this equipment was put into circulation and was granted the right to check the product type for compliance with these requirements.

Note: If test and measurement equipment is operated with unshielded cables and/or used for measurements on open setups, the user must insure that under these operating conditions, the radio frequency interference limits are met at the border of his premises.

OPERATION AND SERVICE MANUAL

MODEL 4277A LCZ METER

(Including Options 001 and 002)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2228J.

© COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1982 9-1, TAKAKURA-CHO, HACHIOJI-SHI, TOKYO, JAPAN

MANUAL PART NO. 04277-90000 Microfiche Part No. 04277-90050

Printed: JAN. 1984

TABLE OF CONTENTS

Sect	ion	Title	Page	Section	Title	Page
I	GENERAI	L INFORMATION			Continuous Memory	3-36
				3-43.	Resetting Continuous	2 27
	1-1.	Introduction]-]	2 45	Memory	
	1-4.	Description	1-1	3-45.	Unknown Terminals Measurement of Grounded	3-37
	1-11.	Specifications	1-2	3-47.	Samples	3_38
	1-13.	Safety Considerations	1-2	2 40	Selection of Test	3-30
	1-16.	Instruments Covered	1 2	3-49.	Cable Length	3-38
		by Manual	1-2	3-51.	Zero Offset Adjustment	3_30
	1-21.	Options	1-3 1-3	3-53.	Actual Measurement	0 00
	1-23.	Option 001	1-3	5-55.	Equivalent Circuit	3-41
	1-25.	Option 002	1-3	3-57.	Measured Values and	•
	1-27.	Other Options		5-57.	Behavior of Components .	3-43
	1-30.	Accessories Supplied	1-23	3-60.	Deviation Measurement	0 10
	1-32.	Accessories Available	1-23	5-00.	Function	3-44
				3-63.	Characteristics of	•
т т	TMCTAL	ATION		5-05.	Test Fixtures	3-44
ΙΙ	INSTAL	LATION		3-65.	Measurement Accuracy	
	2-1.	Introduction	2-1	3-67.	General Component	0
	2-1.	Initial Inspection	2-1	5 07.	Measurement	3-45
			2-1	3-69.	Semiconductor Device	
	2-5.	Preparation for Use Power Requirements	2-1	5 05.	Measurement	3-45
	2-6. 2-8.	Line Voltage and Fuse	2-1	3-71.	External DC Bias	
	2-0.	Selection	2-1	3-74.	External Triggering	
	2-10.	Power Cable	2-1	3-76.	HP-IB Interface	3-54
	2-10.	Interconnections	2-2	3-78.	HP-IB Interface	
	2-14. 2-16.	Operating Environment	2-2	0 70.	Capabilities	3-54
	2-10.	Installation Instructions .	2-2	3-80.	Connection to HP-IB	3-54
	2-19.	Installation of Options		3-82.	HP-IB Status Indicators	
	2-21.	907, 908 and 909	2-4	3-84.	LOCAL Key	3-54
	2-23.	Storage and Shipment	2-4	3-86.	HP-IB Control Switch	3-54
	2-24.	Environment	2-4	3-88.	Addressable Mode	3-55
	2-26.	Packaging	2-4	3-90.	Talk Only Mode	3-55
	2-29.	Option Installation	2-4	3-92.	Remote Program Codes	3-55
	2-31.	Power Failure Monitor		3-94.	Data Output	3-58
	2 31.	Installation	2-4	3-96.	Parameter Setting	3-58
		2110 00 1 1 0 1 0 1 1 1 1		3-98.	Output Data Format	
ΙΙΙ	OPERAT	ION		3-100.	Learn Mode Data	3-64
				3-102.	Recall Comparator Limit	2 64
	3-1.	Introduction	3-1		Data	3-64
	3-3.	Panel Features	3-1	3-104.	Service Request Status	2 (4
	3-5.	Self Test	3-1		Byte	3-64
	3-7.	ROM/RAM Test		3-106.	Programming Guide	2 65
	3-9.	Display Test	3-1	0 100	for 4277A	
	3-11.	Analog Circuit Test		3-108.	Options DC Rise	3-70
	3-13.	Measurement Functions		3-111.	Option 001 Internal DC Bias (-40V to +40V)	, 3.70
	3-15.	Displays	3-10	2 112	(-40V to T40V)	3-70
	3-20.	Error-Codes	კ- ე	3-113.	Option 002 Comparator/ Handler Interface	3-76
	3-24.	Operational Annunciation	3-11 2-16		חמוועזפו דוונפוזמנפ	. 5 / 0
	3-26.	Test Frequency	3-10 2-16			
	3-28.	Test Signal Level	3-10 2-16			
	3-30.	Measurement Range	3-10			
	3-32.	Circuit Mode	3-34			
	3-35.	Initial Display and				

TABLE OF CONTENTS

Sect	ion	Title	Page	Sect	ion	Title	Page
IV	PERFOR	MANCE TESTS		IV	REPLAC	EABLE PARTS	
	4-1. 4-3. 4-5. 4-7.	Introduction	4-1 4-1 4-1		6-1. 6-3. 6-5. 6-7. 6-10.	Introduction	6-1 6-1 6-2
	4-9.	Accuracy Test Standards Test Frequency Accuracy Test		VII	MANUAL	CHANGES	
	4-11.	Test Signal Level Accuracy	. 4-7		7-1. 7-3.	Introduction	7-1 7-1
	4-13. 4-15. 4-17.	Self-Operating Test Open/Short Test Capacitance Accuracy Test		VIII	SERVIC	Е	
	4-19. 4-21. 4-23. 4-25.	Resistance Accuracy Test Phase Accuracy Test INT DC Bias Voltage Accura Test (Option 001) 16064A Comparator/Handler Interface Test (Option 002)	4-17 4-19		8-1. 8-3. 8-5. 8-7. 8-9. 8-11. 8-13.	Introduction	8-1 8-1 8-1 8-1 8-1 8-2
	4-27.	HP-IB Interface Test	4-25		8-15. 8-18. 8-27.	Auto-Balance Bridge Measurement Circuit Vector Voltage Ratio Detector	8-2 8-4
٧	ADJUST	MENT			8-29. 8-30.	Digital Control	8-11
	5-1. 5-3. 5-7.	Introduction	5-1		8-32. 8-33.	Signal Source Phase-Locked Loop and Divider	8-11 8-11
	5-9. 5-11. 5-13. 5-15. 5-17. 5-19. 5-21.	Factory Selected Component Adjustment Relationships . Adjustment Locations Inital Operating Procedure DC Power Supply Adjustment Reset Circuit Adjustment . Test Signal Level Adjustment	5 5-1 5-4 5-4 5-4 5-5 5-6		8-38. 8-40. 8-42. 8-44. 8-47. 8-49.	Low-Pass Filter	8-14 8-15 8-15 8-15
	5-23. 5-25. 5-27. 5-29.	Bridge Offset Adjustment TRD Offset Adjustment Range Resistor and Phase Tracking Adjustment	5-9 5-11	,	8-51. 8-54. 8-56. 8-58.	Control Loop	8-17 8-18 8-18 8-18
	5-31.	Range Resistor Phase Adjustment			8-60. 8-62.	AM Amplifier Test Level Low (TLL) Amplifier	
	5-33. 5-35.	AM Amplifier Adjustment INT DC Bias Supply Adjustment	5-19	;	8-64. 8-66. 8-68.	Phase Detector	8-21 8-23

TABLE OF CONTENTS

Section	Title	Page	Section	Title	Page
8-72. 8-74. 8-76. 8-78. 8-80. 8-82. 8-84. 8-87. 8-91. 8-95.	Pulse Swallow	8-26 8-26 8-28 8-29 8-36 8-36 8-37 8-37 8-37	8-105. 8-107. 8-109. 8-111. 8-113. 8-115. 8-117.	A5 Display	. 8-40 . 8-43 . 8-43 . 8-45 . 8-45 . 8-46

LIST OF TABLES

Number	Title	Page	Number	Title	Page
1-1. 1-2.	Specifications Supplemental Performance		3-15.	Data Output Codes for PACKED BINARY Mode	3-62
1-2.	Characteristics	1-21	3-16.	Output Data Formats	
1-3.	Accessories Available		3-17. 3-18.	Sample Programs	3-66
3-1.	Measurement Functions	3-10		-	
3-2.	Number of Counts on DISPLAY B		4-1. 4-2.	Recommended Equipment Test Frequency Accuracy	
3-3.	Error-Codes for ROM/RAM Self Test	3-12	4-3.	Test Test Signal Level Accurac	у
3-4.	Error-Codes for Analog Circuit Self Test		4-4.	Test Self-Operating Test (Item	9) 4-9
3-5.	Operation Error Codes Don FREQUENCY/DC BIAS Display		(b	Self-Operating Test (Item)Open/Short Tests (Open) .)Open/Short Tests (Short)	4-12
3-6.	Operation Error Codes Don DISPLAY A/B	isplayed	•)Capacitance Accuracy Test (CABLE LENGTH=0)	4-15
3-7.	Test Frequency Ranges and Resolution		(b)Capacitance Accuracy Test (CABLE LENGTH=1m, test	
3-8.	Test Signal Level Accura	acy 3-16		frequency=1MHz)	
3-9.	Dissipation Factor Equa	tions	4-8.	Resistance Accuracy Tests	
0 30	and Equivalent Circuit Conversion Formulas		4-9. 4-10.	Phase Accuracy Tests INT DC Bias Voltage Test	
3-10.	Typical Characteristics Test Fixtures and Leads		4-11.	Limits Handler Interface Output	
3-11.	HP-IB Interface Capabilities		4-12.	Data States Controller Instructions a	ınd
3-12.	Output Data Formats Selvin TALK ONLY Mode	ectable		Operator Responses for Test Program 1	
3-13.	Remote Program Codes				
3-14.	Data Output Codes for ASCII Mode				

LIST OF TABLES

Number	Title	Page	Number	Title	Page
4-13.	Controller Instructions and Operator Responses for Test Program 2		8-1.	Phase Detection Vector Selection in Accordance	
4-14.	Controller Instructions and Operator Responses for Test Program 3	d	8-2.	with the Bridge Measurement Circuit Mode Parameter Conversion Formulas	8-4 8-9
5-1. 5-2. 5-3.	Adjustable Components Factory Selected Components Adjustment Requirements	5 5-3 5-4	8-3. 8-4. 8-5.	PLL Control Parameters Test Frequency Range Control	8-12
5-4. 5-5.	DC Power Supply Voltage Tes Limits Test Signal Level Test	5-6	8-6. 8-7.	ERR and EDUT Switching Control AM Amplifier Control	8-19
5-6. 5-7.	Limits TRD Offset Test Limits A2L4 and A2L6 Nominal	5-13	8-8. 8-9.	Phase Detection Signal Control Integrator Charge Time	8-23
6-1.	Values List of Reference Designate and Abbreviations	irs	8-10. 8-11.	vs Frequency	8-36
6-2. 6-3.	Manufacturers Code Lists Replaceable Parts	6-2	8-12.	AddressesI/O Enable Signals	8-37 8-37
7-1.	Manual Changes by Serial Number	7-1			
	LIST	OF ILLU	STRATIO	NS	
1-1. 1-2.	Model 4277A and Accessories	1-1	3-9.	Four Terminal Pair	
2-1. 2-2.	Serial Number Plate Voltage and Fuse Selection Power Cables Supplied	1-3 2-2 2-3	3-10.	Measurement Principle Test Signal Phase on Test Cables	
2-3. 2-4. 2-5.	Rack Mount Kit	2-5 2-6	3-11. 3-12.	SA SELECT Switch Settings for 2m Test Leads	
2-6.	Installing Option 002 Power Failure Monitor	2-7	3-12.	Zero Offset Adjustment (Parasitic Impedaces Incident	
3-1.	Installation	2-8	3-14.	to DUT Connections	
3-2. 3-3.	Front Panel Features Rear Panel Features Equivalent Circuit of the		3-15.	Residual Impedance	
3-4.	Test Signal Source Measurement Ranges and Number of Display Digits		3-16. 3-17.	Effect of Resonance in Sample (Example)	
3-5.	Measurement Ranges and Range Resistors	3-33	3-18.	Representation	
3-6.	Number of Counts vs Frequency		3-19.	of an Inductor	
3-7.	Parallel and Series Parameter Relationship.		3-20.	Accuracies	
3-8.	Four Terminal Pair DUT Connections		3-21.	Semiconductor Devise Measurement	

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
3-22.	External Trigger Pulse		5-10.	A2R97 Replacement Flow	
3-23. 3-24.			5-11.	Diagram	
3-25.			5-12.	Flow Diagram	
3-26. 3-27.	Status Byte for the 4277A . Sample Program 1	3-66	5-13.	Adjustment Setup AM Amplifier Adjustment	
3-28. 3-29.	Sample Program 2	3-68	5-14.	SetupINT DC Bias Supply	
3-30. 3-31.	Sample Program 4 Option 001 Internal	3-69		Adjustment Setup	5-21
3-32.	DC Bias Internal DC Bias Voltage	_	6-1.	Major Mechanical Parts -Exploded View	6-19
3-33.	Monitor Pin Assignments for the	3-74	8-1. 8-2.	4277A Block Diagram Vector-Voltage-Current-	8-2
3-34.	Handler Interface Connector (HP 16064A)		0-2.	Ratio Measurement Method using the Range Resistor	
4-1.	Test Frequency Accuracy	4. 6	8-3.	Amplifier	8-3 8-4
4-2.	Test Setup Test Signal Level Accuracy	4-6	8-4.	Phase Detection Vector Diagram	8-5
4-3.	Test Setup	4-8	8-5.	Bridge Measurement Circuit Mode in Accordance with	0.6
4-4. 4-5.	Open/Short Test Setups Capacitance Accuracy	4-11	8-6.	Measurement Ranges Vector Voltage Ratio	8-6 8-7
4-6.	Test Setups (CABLE LENGTH: 1m) Option 001 INT DC Bias	4-13	8-7.	Detection Timing Test Signal Voltage and Current Relationship to	0-7
	Accuracy Test Setup 16064A Comparator/Handler	4-20	8-8.	DUT's Impedance Signal Source Block Diagram	8-8 8-11
4-7. 4-8.	Interface	4-22	8-9. 8-10.	Reclock Circuit Low Pass Filter	8-13
	Pin Assignments HP-IB Interface Test Setup	4-24 4-25	8-11.	Auto-Balance Bridge Block Diagram	
4-9. 5-1.	DC Power Supply Adjustment	4-25	8-12.	Feedback Circuit Element Selection in I-V	0 10
5-2.	Setup	5-5	8-13.	ConverterSPAM and TLPAM Control	8-16
5-2. 5-3.	Setup Test Signal Level Adjustmen	5 - 6	8-14.	Signals Vector Representation of	8-16
5-4.	Setup	5-7		the Vector Modulator Outputs	8-17
5-5.	Setup	5-9 5-10	8-15.	Vector Ratio Detector Block Diatram	
5-6. 5-7.	Integrator Adjustment Setup TRD Offset Adjustment Setup		8-16.	AM.1 and AM10 Control Signals	8-19
5-8.	Range Resistor and Phase Tracking Adjustment		8-17. 8-18.	TLL Control Signal AM Amplifier Control	8-19
5-9.	Setup Phase Tracking Adjustment Flow Diagram		8-19.	Conditions in Accordance with Measurement Ranges Phase Detection Principle .	8-20

Model 4277A List of Illustrations

LIST OF ILLUSTRATIONS

lumber	Title	Page	Number	Title F	Page
8-20.	Phase Detector Signals	8-22	8-43. A	4 Power Supply Board	
8-21.	Reference Detector	0.04		Troubleshooting	
8-22.	Operating Principle	8-24		Flow Diagram 8	3-99
0-22.	Pulse Swallow Operating Principle	0 25	8-44. <i>F</i>	5 Display Board	
8-23.	A-D Converter Block Diagram			Troubleshooting	101
8-24.	Integrator Charge Time vs	0-20	0.45 [Flow Diagram 8-	-101
0 21.	Measurement Range	8-27	8 - 45. [OC Bias Troubleshooting Flow Diagram8-	-103
8-25.	Zero Shift		8-46. A	A22 Option 001 Internal DC	-103
8-26.	Analog Measurement Section	-	0-40. F	Bias Board	
	Block Diagram	8-31		Troubleshooting	
8-27.	Timing Diagram	8-33			B -46
8-28.	Reset Signal	8-36	8-47. <i>A</i>	Al Logic Board Assembly	
8-29.	AlU2 Anode Scan Decoder			Component Locations 8-	-108
0.00	Output		8-48. <i>F</i>	Al Logic Board Assembly	
8-30.	VRD Control	8-39		Schematic Diagram 8-	-109
8-31.	Alu8 Key Scan Decoder	0.40	8-49. <i>F</i>	A2 Analog Board Assembly	
8-32.	Output HP-IB Interface Adapter	8-40	0.50	Component Locations 8-	-110
0-32.	Internal Register		8 - 50. <i>A</i>	A2 Analog Board Assembly	111
	Configuration	8-40	0.51 /	Schematic Diagram 8-	-111
8-33.	Digital Control Section	0-40	8-51. <i>F</i>	A4 Power supply Board Assembly Component	
0 00.	Block Diagram	8-41		Locations 8-	-114
8-34.	A22 Board Block Diagram	8-44	8-52. <i>F</i>	A4 Power Supply Board	117
8-35.	A5 Display Board	•	- 0 52. 7	Assembly Schematic	
	Disassembly	8-46		Diagram 8-	-115
8-36.	Assembly Locations		8-53. <i>F</i>	A5 Display Board Assembly	
	(Top View)			Component Locations 8-	-116
8-37.	Schematic Diagram Notes		8-54. <i>F</i>	A5 Display Board Assembly	
8-38.	Flow Diagram Notes			Schematic Diagram 8-	-117
8-39.	Signature Analysis	8-52	8-55. <i>F</i>	A6 Mother Board Assembly	
8-40.	Board Isolation		0.56	Component Locations 8-	-118
	Troubleshooting Flow Diagram	0 50	8-56. <i>F</i>	A6 Mother Board Assembly	110
8-41.	Al Logic Board	0-00	0.57 /	Schematic Diagram 8-	-119
0 41.	Troubleshooting		8-57. <i>F</i>	A21 HP-IB Board Assembly Component Locations 8-	120
	Flow Diagram	8-55	8-58. A	A21 HP-IB Board Assembly	- 120
8-42.	A2 Analog Board	0 00	0-30. r	Schematic Diagram 8-	-121
	Troubleshooting		8-59. <i>H</i>	A22 Option OOl Internal	, _ ,
	Flow Diagram	8-69	0 02.	DC Bias Board Assembly	
				Component Locations 8-	-122
			8-60. <i>H</i>	N22 Option OOl Internal	
				DC Bias Board Assembly	
				Schematic Diagram 8-	-123

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This operation and service manual contains the information required to install, operate, test, adjust, and service the Hewlett-Packard Model 4277A LCZ Meter. Figure 1-1 shows the instrument and its supplied accessories. This section covers specifications, instrument identification, description, options, accessories, and other basic information.

1-3. Listed on the title page of this manual is a microfiche part number. This number can be used to order 4×6 inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest manual changes supplement as well as all pertinent service notes. To order an additional manual, use the part number listed on the title page of this manual.

1-4. DESCRIPTION

1-5. The HP Model 4277A LCZ Meter is a fully automatic, high performance test instrument designed to measure the inductance, capacitance, dissipation factor, quality factor, conductance, equivalent series resistance, impedance magnitude, and phase of electronic components and devices. Its built-in test signal source covers the frequency range of 10kHz to 1MHz and provides 701 spot frequencies. Test frequency resolution is 100Hz (maximum), and frequency accuracy is ±0.01% of the selected frequency. Frequently used frequencies--10kHz, 100kHz, and 1MHz--can be quickly selected by the SPOT key. Test signal level is selectable at 1Vrms (HIGH) or 20mVrms The instrument's state-of-the-art 4-terminal pair configuration provides a basic measurement accuracy of 0.1% over a wide measurement range.

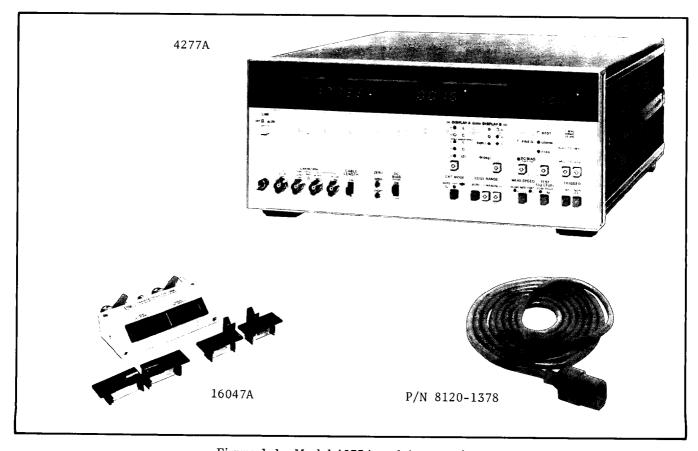


Figure 1-1. Model 4277A and Accessories.

- The 4277A has three measurement speed modes: SLOW, MED, and FAST. When MED mode is selected, total time required for a C-D or L-Q measurement is approximately 70ms (at FAST mode measurement time is approximately 25 percent shorter than that of MED mode. Also, the HIGH SPEED C and HIGH SPEED L measurement functions measurement time to approximately half that of a normal C-D or L-Q measurement. Shortest measurement time is approximately 35ms (HIGH SPEED C or L, FAST mode, at 1MHz). The 4277A is equipped with a ∆ (delta) measurement function to permit temperature dependency or de bias dependency measurements.
- operations--measure-1-7. All instrument ment, front panel control settings, ranging, triggering, HP-IB, displays, self test, continuous memory, etc.—are controlled by a microprocessor. The built-in self test function can be initiated at any time to verify correct operation of the instrument's basic capabilities. The 4277A is also equipped with a continuous memory function that is automatically activated when the instrument is turned off or experiences a power failure. All front panel control settings (except dc bias), zero offset data, and comparator limits (Option 002) are memorized and automatically recalled when the instrument is turned on again.
- 1-8. The Hewlett-Packard Interface Bus (HP-IB) is standard on the 4277A. All of the instrument's standard and optional functions (except power on/off and DC BIAS ON/OFF) can be remotely controlled from an HP-IB compatible controller. When set to TALK ONLY mode, the 4277A can send measurement data to an external device (a printer, for example) without a controller.
- 1-9. The 4277A can be equipped with two special options: Option 001 Internal DC Bias and Option 002 Comparator/Handler Interface. Refer to paragraph 1-21 for a brief description of these options.
- 1-10. A wide selection of accessories—test fixtures and test leads—is available. All accessories are useable with HP's other four-terminal-pair type instruments. A description of furnished accessories is given in paragraph 1-30. For details on available accessories, refer to paragraph 1-32.

1-11. SPECIFICATIONS

1-12. Complete specifications of the Model 4277A are given in Table 1-1. specifications are the performance standards or limits against which the instrument is tested. test procedures for verifying specifications are covered in Section IV, 1-2 lilsts Performance Tests. Table characteristics. supplemental performance Supplemental performance characteristics are not specifications but are typical characteristics included as additional information for the operator. When the 4277A is shipped from the factory, it meets the specifications listed in Table 1-1.

1-13. SAFETY CONSIDERATIONS

- 1-14. The Model 4277A has been designed to conform to the safety requirements of an IEC (International Electromechanical Committee) Safety Class I instrument and is shipped from the factory in a safe condition.
- 1-15. This operating and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

1-16. INSTRUMENTS COVERED BY MANUAL

- 1-17. Hewlett-Packard uses a two-section nine character serial number which is stamped on the serial number plate (Figure 1-2) attached to the instrument's rear-panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies the country where the instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.
- 1-18. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from the one described in this manual. The manual for this newer instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-19. In addition to change information, the contain information supplement may correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement from Hewlettare available Packard. If the serial prefix or number of an instrument is lower than that on the title page of this manual, see Section VII, Manual Changes.

1-20. For information concerning a serial number prefix that is not listed on the title page or in the Manual Change supplement, contact the nearest Hewlett-Packard office.

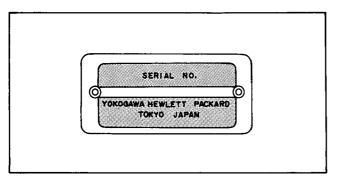


Figure 1-2. Serial Number Plate.

1-21. OPTIONS

1-22. Options are modifications to the standard instrument that implement the user's special requirements for minor functional changes. The 4277A has two options:

Option 001: Internal DC Bias Supply

 $(0 -- \pm 40V)$

Option 002: Comparator/Handler Interface

1-23. OPTION 001

1-24. Option 001 equips the standard 4277A with a built-in dc voltage source for biasing the device under test. Output voltage is user-selectable from 0 to ±40V with 10mV (0V to ±9.99V range) or 100mV (±10V to ±40V range) setting resolution, and can be keyed in directly from the front panel or remotely programmed via the HP-IB. Maximum display resolution is 3 digits.

1-25. OPTION 002

1-26. Option 002 equips the standard 4277A with the 16064A Comparator/Handler Interface for go/no-go testing and automatic bin sorting. Up to nine sets of HIGH/LOW limits for one DISPLAY A function (L, C, or | Z|) and one set of HIGH/LOW limits for one DISPLAY B function (D, Q, ESR, or G) can be manually keyed in from the 16064A, or entered from a remote controller via the HP-IB. Comparison results--HIGH, IN, or LOW—for each measurement parameter are indicated by LED lamps on the 16064A and by open collector (TTL level voltages) output from the handler interface connector.

HIGH: Measured value exceeds the HIGH limit.

IN: Measured value is within the HIGH and LOW limits, inclusive.

LOW: Measured value is lower than the LOW limit.

1-27. OTHER OPTIONS

1-28. The following options provide the mechanical parts necessary for rack mounting and hand carrying:

Option 907: Front Handle Kit. Furnishes carrying handles for both ends of the front-panel.

Option 908: Rack Flange Kit. Furnishes flanges for rack mounting.

Option 909: Rack Flange and Front Handle Kit. Furnishes front handles (Opt. 907) and rack flanges (Opt. 908).

Installation instructions for these options are given in Section II.

1-29. Option 910 adds an extra copy of the Operation and Service Manual.

Table 1-1. Specifications (Sheet 1 of 17)

SPECIFICATIONS

Parameters Measured:

C (capacitance), L (inductance), |Z| (impedance), D (dissipation factor), Q (quality factor), ESR (equivalent series resistance), G (conductance), θ (phase angle), HIGH SPEED C (at 1MHz only), HIGH SPEED L (at 1MHz only), Δ (deviation).

Measurement Circuit Modes:

Auto, Series (•□•••), and Parallel (•□□•)

Parameter Combinations:

Circuit Mode	Parameter Combination
Series •□•₩•	C-D, C-Q, C-ESR, L-D, L-Q, L-ESR, Z -0, HIGH SPEED C, HIGH SPEED L
Parallel •ि्रा•	C-D, C-Q, C-G, L-D, L-Q, L-G, Z -θ, HIGH SPEED C, HIGH SPEED L

Measurement Speed Modes: SLOW, MED, and FAST

Displays:

Measurement Speed Mode	Display Digits	Maximum Display	
SLOW	4 1/2	19999 counts	
MED	4 1/2		
FAST	3 1/2	1999 counts	

Note: Number of display digits depends on the test frequency, the test signal level, and the measurement range.

Measurement Terminals:

4-terminal-pair configuration with guard terminal

Ranging Modes:

Auto and Manual (UP/DOWN keys)

Test Frequencies:

Test Frequency Range	Resolution
10kHz to 20kHz	100Hz
20kHz to 50kHz	200Hz
50kHz to 100kHz	500Hz
100kHz to 200kHz	1kHz
200kHz to 500kHz	2kHz
500kHz to 1MHz	5kHz

Frequency Control Modes: SPOT (10kHz, 100kHz, 1MHz) COARSE (10 freq. points/decade) FINE (maximum resolution)

Frequency Accuracy: ±0.01%

Test Signal Level:

HIGH (1Vrms) or LOW (20mVrsm)

Level Accuracy:

Test Signal Level	Test Frequency		
lest Signal Level	1MHz	10kHz to 995kHz	
HIGH	±10%	±10%	
LOW	1100	±15%	

Output Impedance: 100Ω ±10%

Deviation Measurement:

Calculates and displays the difference between a stored reference values and measured values.

Self Test:

Checks the 4277 A's basic operation when the instrument is turned on or when the SELF TEST key is pressed. If an abnormality is detected, an error code is displayed on DISPLAY A.

Table 1-1. Specifications (Sheet 2 of 17)

Zero Offset Adjustment:

Compensation for residual impedance and stray admittance of the test fixture connected to the UNKNOWN terminals is automatically done by the ZERO OPEN/SHORT buttons.

Compensation frequencies:

10k, 20.2k, 50.5k, 100k, 202k, 505k, 700k, 900k, and 1MHz

Compensation at other frequencies is automatically done by secondary interpolation.

Maximum Offset Values:

C: Up to 20pF \ (open)

G: Up to 2 µs

L: up to $2\mu H$ } (short)

R: up to 2Ω

CABLE LENGTH:

1m or 0m. Use 0m for direct attachment type test fixtures; use 1m for test leads.

Trigger:

Internal, External, Manual, or HP-IB remote

External DC Bias:

Up to $\pm 40 \text{V}$ dc can be applied to the DUT from an external voltage source connected to the EXT INT/INT MONITOR BNC connector on the rear panel. Output impedance is $1040\Omega\pm10\%$.

HP-IB (Hewlett-Packard Interface Bus):

Data output and remote control. Based on IEEE Std. 488 and ANSI-MC1.1.

Interface Capabilities:

SH1, AH1, T5, L4, SR1, RL1, DC1, DT1, and E1

Remote Control:

All front panel control settings (except power switch, DC BIAS (ON/OFF switch, and CABLE LENGTH switch) and all 16064A Comparator/Handler-Interface settings (option 002).

Data Output:

Parameter measured Equivalent circuit mode Display status Measured values Comparator output

Output Format:

ASCII format or Binary format

Continuous Memory:

Memorizes all front panel control settings (except DC BIAS voltage setting), zero offset adjustment data, Δ reference values, and comparator limits (option 002) when the instrument is turned off or experiences a power failure. Settings and data are recalled when the instrument is turned on.

Warm-up Time:

Minimum 30 minutes

Ambient Temperature:

23 °C±5 °C (at 0 °C to 55 °C, error doubles)

General Specifications

Operating Temperature: 0°C to 55°C

Relative Humidity: 95% at 40 °C

Storage Temperature: -40 °C to +70 °C

Power Requirements:

90V to 132V, 198V to 250V. 48Hz to 66Hz.

Power Consumption:

75VA max. with any option

Dimensions:

425.5 (W) x 188 (H) x 430 (D)mm

Weight: Approximately 8.5kg

Table 1-1. Specifications (Sheet 3 of 17)

Capacitance Measurement Accuracy

C-D Measurement Accuracy:

C Accuracy: ±[(% of reading) + (error in farads) + (number of counts)], see Tables

A-l and A-2.

D Accuracy: ±[(% of reading) + (D error) + (number of counts)], see Tables A-1 and

A-2.

Note: Use Table A-1 when the test frequency is 10kHz, 100kHz, or 1MHz.

Use Table A-2 for all other frequencies.

Note: Accuracies obtained from Tables A-1 and A-2 are valid only for

measurements made with the CABLE LENGTH switch set to 0m. When the CABLE LENGTH switch is set to 1m, add the errors listed

in Table A-3 to the accuracies obtained from Tables A-1 and A-2.

Table A-1. C-D Accuracies (10kHz, 100kHz, 1MHz only)

Capacitance		Test Frequency	···-
Range	10kHz	100kHz	1MHz
10μF			
1μF		$(1 + \alpha)\% + \frac{3}{2}$ 1% + .03 + $\frac{2}{2}$	
100nF	$.1\% + 30 \text{pF} + \frac{5}{5}$ $.5\% + .0005/\alpha + .0006 + \frac{5}{5}$	$\begin{array}{c} (.3 + .5\alpha)\% + \underline{3} \\ .3\% + .003\alpha + .002 + \underline{3} \end{array}$	
10nF	.1% + 3pF + $\frac{5}{\alpha}$ + .0006 + $\frac{5}{\alpha}$	$.1\% + 3pF + 5 .3\% + .0005/\alpha + .0006 + 5$	$(.3 + .5\alpha)$ % + 3 $.3$ % + .003 α + .002 + 3
lnF	.1% + .3pF + 5 $.5\% + .0005/\alpha + .0006 + 5$.1% + .3pF + 5 $.3\% + .0005/\alpha + .0006 + 5$	
100pF	$.3\% + 30 \text{ fF} + \underline{10}$ $.5\% + .0005/\alpha + .003 + \underline{5}$	$.1\% + 30 \text{ fF} + \frac{5}{2}$ $.3\% + .0005/\alpha + .0006 + \frac{5}{2}$.1% + <u>5</u> * .3% + .0005/\alpha + .0006 + <u>5</u>
10pF		.3% + 3fF + 10 $.5\% + .0005/\alpha + .003 + 5$	1
1pF			.3% + .3fF + 10 .5% + .0005/α + .003 + <u>5</u>

*: When LOW test signal level (20mVrms) is used, C accuracy is as follows:

.1% + 10

Table 1-1. Specifications (Sheet 4 of 17)

					· · · · · · · · · · · · · · · · · · ·	
Capacitance Range	10.1kHz to 20kHz	20.2kHz to 50kHz	Test Frequency R	ange 101kHz to 200kHz	202kHz to 500kHz	505kHz to 995kHz
10μF	10.11412 CO 20112	20.2MIZ CO JONIZ	30.3412 (0 99.3412	TOTALZ EO ZOURNZ	ZUZKHZ TO SUUKHZ	SUSKHZ TO 995KHZ
1μF						
100nF	.1% + 80pF + $\frac{5}{2}$ + .0005/ α + .0016 + $\frac{5}{2}$		$(.3 + .5\alpha)$ % + 3 .3% + .003\alpha + .002 + 3		(
10nF	.1% + 8pF + 5 .3% + .0005/α + .0016 + <u>5</u>	.1% + $12pF + 5$.3% + .0005/ α + .0024 + 5	18 + 6pF + 5 $38 + .0005/\alpha + .0012 + 5$	$.14 + 8pF + \frac{5}{\alpha}$ $.38 + .0005/\alpha + .0016 + \frac{5}{\alpha}$		
1nF	.1% +.8pF + $\frac{5}{\alpha}$ + .0005/ $\frac{\alpha}{\alpha}$ + .0016 + $\frac{5}{2}$.1% + 1.2pF + <u>5</u> .3% + .0005/α + .0024 + <u>5</u>	$.1\$ + .6pF + 5.3\$ + .0005/\alpha + .0012 + 5$.1% + .8pF + <u>5</u> .3% + .0005/α + .0016 + <u>5</u>	$.1\$ + 1.2pF + \frac{5}{4}$ $.3\$ + .0005/\alpha + .0024 + \frac{5}{4}$.1% + .6pF + <u>5</u> .3% + .0005/α + .0012 +
100pF	$.3\% + 80 \text{ fF} + \underline{10}$ $.5\% + .0005/\alpha + .003 + \underline{5}$.1% + 60fF + 5 .3% + .0005/α + .0012 + 5		.1% + .12pF + 5 .3% + .0005/α + .0024 + <u>5</u>	.1% + 60fF + 5 .3% + .0005/\alpha + .0012 +
10pF		.3% + 12fF + <u>10</u> .5% + .0005/α + .003 + <u>5</u>	.3% + 6fF + 10 .5% + .0005/\alpha + .003 + 5	.3% + 8fF + 10 $.5\% + .0005/\alpha + .003 + 5$.1% + 12fF + <u>5</u> .3% + .0005/α + .0024 + <u>5</u>	$.1\% + 6fF + \frac{5}{\alpha}$ $.3\% + .0005/\alpha + .0012 +$
1pF					.3% + 1.2fF + <u>10</u> .5% + .0005/α + .003 + 5	.3% + .6fF + <u>10</u> .5% + .0005/\alpha + .003 + 5

Equations in Tables A-1 and A-2 represent:

C Accuracy
D Accuracy

α: Full-scale factor (= measured C value ÷ full-scale C value). For example, when the measured C value is 850pF on the 1000pF range, α is 0.85.

Table A-3. Additional Measurement Error for C-D at 1MHz

C Range	1MH z
100nF	.1% of reading
10nF	.001/α
1nF	.06% of reading .0003α
100pF	.03% of reading .0002α
10pF	.05% of reading .0003α
1pF	.4% of reading .001α

Note 1: Tables A-1 and A-2 are applicable under the following conditions:

(1) CABLE LENGTH: 0m

(2) Test Signal Level: HIGH (1Vrms)

(3) Sample's D Value: ≤ 0.1

(4) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.

Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Note 1: Table A-3 is applicable under the following conditions:

(1) Test Frequency: 1MHz

(2) CABLE LENGTH: 1m

(3) Test Signal Level: HIGH (1Vrms)

(4) Sample's D Value: ≤ 0.1

(5) Test Leads: Model 16048A or 16048B

(6) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.

Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Table 1-1. Specifications (Sheet 5 of 17)

C-Q Measurement Accuracy:

C Accuracy: ±[(C accuracy of C-D measurement)]

Q Accuracy: ±[(D accuracy : measured D value x 100)% of Q reading + 1 count]

Note: Q is the reciprocal of D.

Note: Q accuracy is calculated from the measured D value. Refer to Figure 3-19.

HIGH SPEED C Measurement Accuracy:

C Accuracy: ±[(C accuracy of C-D measurement)]

Note: HIGH SPEED C accuracy is specified on the ranges enclosed in the dotted line in Table A-1.

Note: Table A-l is applicable under the following condition:

(1) Sample's D Value: ≤0.01

C-ESR/G Measurement Accuracy:

C Accuracy: ±[(C accuracy of C-D measurement)]

ESR Accuracy: ±[(% of reading) + (ESR error in ohms) + (number of counts)], see Tables A-4 and A-5.

G Accuracy: ±[(% of reading) + (G error in siemens) + (number of counts)], see Tables A-4 and A-5.

Note: Use Table A-4 when the test frequency is 10kHz, 100kHz, or 1MHz. Use Table A-5 for all other frequencies.

Note: ESR range and G range depend on the selected C range and test frequency. Refer to Table A-7.

Note: Accuracies obtained from Tables A-4 and A-5 are valid only for measurements made with the CABLE LENGTH switch set to 0m. When the CABLE LENGTH switch is set to 1m, add the errors listed in Table A-6 to the accuracies obtained from Tables A-4 and A-5.

Note: DISPLAY B function, when ESR/G is selected, depends on the CIRCUIT MODE.

Table 1-1. Specifications (Sheet 6 of 17)

Table A-4. C-ESR/G Accuracies (10kHz, 100kHz, 1MHz only)

ESR/G Range			Te	st Frequen	icy
ESR/G	сок/с калде			100kHz	1MHz
ESR	1МΩ			Note 1.	
G	10µS	G :	.3%	$+ 4\alpha nS + 3$	20nS + <u>5</u>
ESR	100kΩ	ESR:	See	Note 1.	
G	100µS	G :	.1%	+ 60anS +	20nS + <u>5</u>
ESR	10kΩ	ESR:	See	Note 1.	
G	1mS	G :	.1%	+ .6αμS +	0.2μS + <u>5</u>
ESR	lkΩ	ESR:	See	Note 1.	
G	10mS	G :	.1%	+ 6aus + 2	2µS + <u>5</u>
ESR	100Ω	ESR:	. 2%	+ 30αmΩ +	20mΩ + 5
G	100mS	G : 5	See	Note 2.	_
ESR	10Ω	ESR:	.5%	+ 5αmΩ + 6	omΩ + <u>5</u>
G	1S	G : 5	See	Note 2.	_

Table A-5. C-ESR/G Accuracies

ESR/G Range			Test Frequency Range							
		10.1kHz to 20kHz	20.2kHz to 99.5kHz	101kHz to 200kHz	202kHz to 995kHz					
ESR	1ΜΩ	See Note 1.	See Note 1.	See Note 1.	See Note 1.					
G	10μS	.3% + 12αnS + 60nS + <u>5</u>	.3% + 6\alpha nS + 30 nS + 5	.3% + 12\ans + 60\ns + 5	.3% + 6αnS + 30nS + <u>5</u>					
ESR	100kΩ	See Note 1.	See Note 1.	See Note 1.	See Note 1.					
G	100μS	.1% + .18αμS + 60nS + <u>5</u>	.1% + 90αnS + 30nS + <u>5</u>	.1% + .18αμS + 60nS + <u>5</u>	.1% + 90αnS + 30nS + <u>5</u>					
ESR	10kΩ	See Note 1.	See Note 1.	See Note 1.	See Note 1.					
G	1mS	.1% + 1.8αμS +.6 μS + <u>5</u>	.1% + .9αμS + .3μS + <u>5</u>	.1% + 1.8αμS +.6μS + <u>5</u>	.1% +.9αμS + .3μS + <u>5</u>					
ESR	1kΩ	See Note 1.	See Note 1.	See Note 1.	See Note 1.					
G	10mS	.1% + 18αμS + 6μS + <u>5</u>	.1% + 9αμS + 3μS + <u>5</u>	.1% + 18αμS + 6μS + <u>5</u>	.1% + 9αμS + 3μS + <u>5</u>					
ESR	100Ω		$.2\% + 30 \alpha m\Omega + 30 m\Omega + 5$	$.2\% + 30\alpha m\Omega + 60m\Omega + 5$						
ESR	10Ω	.5% + 5α m Ω + 18 m Ω + 5	.5% + 5α m Ω + 18 m Ω + 5	$.5\% + 5\alpha m\Omega + 18m\Omega + 5$ See Note 2.	.5% + $5 cm\Omega + 9 m\Omega + 5$					
G	1S	See Note 2.	See Note 2.		See Note 2.					

10kHz

20kHz

100kHz

200kHz

1MHz

Table 1-1. Specifications (Sheet 7 of 17)

Equations in Tables A-4 and A-5 represent:

ESR Accuracy
G Accuracy

α: Full-scale factor (= measured C value ÷ full-scale C value). For example, when the measured C value is 850pF on the 1000pF range, α is 0.85.

- Note 1: ESR accuracy is ±[2 (C accuracy : measured C x 100)% of ESR reading + (G accuracy : measured G x 100)% of ESR reading + 1 count].
- Note 2: G accuracy is ±[2 (C accuracy : measured C x 100)% of G reading + (ESR accuracy : measured ESR x 100)% of G reading + 1 count].
- Note 3: Tables A-4 and A-5 are applicable under the following conditions:
- (1) CABLE LENGTH: 0m
- (2) Test Signal Level: HIGH (1Vrms)
- (3) Sample's D Value: ≤ 0.1
- (4) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.
- Note 4: Error doubles when LOW test signal level (20mVrms) is used.

Table A-6. Additional Measurement Error for ESR and G at 1MHz

ESR/G Range	1MH z
10Ω	.1% of reading
100Ω	.06% of reading
10mS	.06% of reading + 3αμS
1mS	.04% of reading of .2αμS
100μS	.05% of reading + 30αnS
10μS	.4% of reading + 10αnS

- Note 1: Table A-6 is applicable under the following conditions:
- (1) Test Frequency: 1MHz
- (2) CABLE LENGTH: 1m
- (3) Test Signal Level: HIGH (1Vrms)
- (4) Sample's D Value: ≤0.1
- (5) Test Lead: Model 16048A or 16048B
- (6) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.
- Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Table 1-1. Specifications (Sheet 8 of 17)

Table A-7. ESR/G Range Selection

Capacitance				Te	est Frequ	ien	cy Range	e		
Range		10kHz	to	20kHz	20.2kHz	to	200kHz	202kHz	to	1MHz
· 10μF	ESR									
	G									
1µF	ESR			`		0Ω				
	G					S		<u> </u>		
100nF	ESR			_		0Ω				
	G				10	0mS	<u> </u>			
10nF	ESR			`	1	kΩ				
10111	G					0mS				
1nF	ESR			`	1	0kΩ	,			
1111	G				1	mS				
100pF	ESR			`		0ks		1		
	G				10	0μS	; ,			
10pF	ESR			,		мΩ				
20pi	G				1	0μS				
1PF	ESR						ì			
111	G									

Table 1-1. Specifications (Sheet 9 of 17)

Inductance Measurement Accuracy

L-D Measurement Accuracy:

L Accuracy: ±[(% of reading) + (L error) + (number of counts)], see Tables B-1 and

B-2.

D Accuracy: \pm [(% of reading) + (D error) + (number of counts)], see Tables B-l and

B-2.

Note: Use Table B-1 when the test frequency is 10kHz, 100kHz, or 1MHz.

Use Tables B-2 for all other frequencies.

Note: Accuracies obtained from Tables B-l and B-2 are valid only for

measurements made with the CABLE LENGTH switch set to 0m. When the CABLE LENGTH switch is set to 1m, add the errors listed

in Table B-3 to the accuracies obtained from Tables B-1 and B-2.

Table B-1. L-D Accuracies (10kHz, 100kHz, 1MHz only)

Inductance	Test Frequency							
Range	10kHz	100kHz	1MHz					
1Н								
100mH		$\frac{1\% + \frac{5}{0.02}}{1\% + \frac{5}{0.02} + 3}$						
10mH		1% + .02 + <u>3</u>						
1mH	$1.2\% + .4\mu H + \frac{5}{2}$ $1.3\% + .0005/\alpha + .0008 + \frac{5}{2}$.5% + <u>5</u> .5% + .005α + .005 + <u>5</u>						
100μΗ	$.3\% + 40\text{nH} + \frac{10}{.5\% + .0005/\alpha + .005 + \frac{5}{.005}}$	$.2\% + 40$ nH + $\frac{5}{3}$ $.3\% + .0005/\alpha + .0008 + \frac{5}{2}$						
10µН		$.3\% + 4nH + \frac{10}{0.5\% + .0005/\alpha + .005 + 5}$	$1.2\% + 4nH + \frac{5}{\alpha}$ $1.3\% + .0005/\alpha + .0008 + \frac{5}{\alpha}$					
1μΗ			$1.3\% + .4 \text{nH} + \frac{10}{1.5\%} + .0005/\alpha + .005 + \frac{5}{1.5\%}$					

Table 1-1. Specifications (Sheet 10 of 17)

Table B-2. L-D Accuracies

Inductance			Test Freq	iency Range		
Range	10.1kHz to 20kHz	20.2kHz to 50kHz	50.5kHz to 99.5kHz	101kHz to 200kHz	202kHz to 500kHz	505kHz to 995kHz
1н					and a dead of	
100mH		1% + <u>5</u> 1% + .02 + 3				
10mH		1% + .02 + 3			1% + S	•
1mH		.5% + <u>5</u> .5% + .005α + .005 + <u>5</u>			$\frac{1\% + \frac{5}{1}}{1\% + .02 + \frac{3}{2}}$	
100µH	.2% + .12μH + <u>5</u> .3% + .0005/α + .0024 + <u>5</u>	.2% + 80nH + <u>5</u> .3% + .0005/α + .0016 + <u>5</u>	.2% + 60nH + <u>5</u> .3% + .0005/α + .0012 + <u>5</u>		.5% + <u>5</u> .5% + .005α + .005 + <u>5</u>	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:
10րН	.3% + 12nF + <u>10</u> .5% + .0005/α + .005 + <u>5</u>	$.3\% + 8nH + \frac{10}{6}$ $.5\% + .0005/\alpha + .005 + \frac{5}{2}$.3% + 6nH + 10 $.5\% + .0005/\alpha + .005 + 5$.2% + 12nH + <u>5</u> .3% + .0005/α + .0024 + <u>5</u>	.2% + 8nH + $\frac{5}{\alpha}$.3% + .0005/ $\frac{1}{\alpha}$ + 0.0016 + $\frac{5}{\alpha}$	$.2\% + 6nH + \frac{5}{\alpha} + .0005/\alpha + .0012 + .0012$
1μH				.3% + 1.2nH + <u>10</u> .5% + .0005/α + .005 + <u>5</u>	.3% + .8πH + <u>10</u> .5% + .0005/α + .005 + <u>5</u>	.3% + .6nH + <u>10</u> .5% + .0005/\alpha + .005 +
10k	kHz 20	kHz 501	kHz 10	DkHz 20	OkHz 500	OkHz

Equations in Tables B-1 and B-2 represent:

- L Accuracy
- D Accuracy

Table B-3. Additional Measurement Error for L and D at 1MHz

L Range	1MHz
10mH	
1mH	.1% of reading .001/α
100μΗ	
10µН	.06% of reading .0003α
1μH	.1% of reading .001α

Note 1: Tables B-1 and B-2 are applicable under the following conditions:

- (1) CABLE LENGTH: 0m
- (2) Test Signal Level: HIGH (1Vrms)
- (3) Sample's D Value: ≤ 0.1
- (4) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.

Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Note 1: Table B-3 is applicable under the following conditions:

- (1) Test Frequency: 1MHz
- (2) CABLE LENGTH: 1m
- (3) Test Signal Level: HIGH (1Vrms)
- (4) Sample's D Value: ≤ 0.1
- (5) Test Lead: Model 16048A and 16048B
- (6) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.

Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Table 1-1. Specifications (Sheet 11 of 17)

L-Q Measurement Accuracy

L Accuracy: ±[(Laccuracy of L-D measurement)]

Q Accuracy: ±[(D accuracy + measured D value x 100)% of Q reading + 1 count]

Note: Q value is the reciprocal of D.

Note: Q accuracy is calculated from the measured D value. Refer to Figure 3-19.

HIGH SPEED L Measurement Accuracy:

L Accuracy: ±[(L accuracy of L-D measurement)]

Note: HIGH SPEED L accuracy is specified in the range enclosed in the dotted line in Table B-1.

Note: Table B-1 is applicable under the following condition:

(1) Sample's D Value: ≤ 0.01

L-ESR/G Measurement Accuracy

L Accuracy: ±[(Laccuracy of L-D measurement)]

ESR Accuracy: ±[(% of reading) + (ESR error in ohms) + (number of counts)], see Tables B-4 and B-5.

G Accuracy: ±[(% of reading) + (G error in siemens) + (number of counts)], see Tables B-4 and B-5.

Note: Use Table B-4 when the test frequency is 10kHz, 100kHz, or 1MHz. Use Table B-5 for all other frequencies.

Note: ESR range and G range depend on the selected L range and test frequency. Refer to Table B-7.

Note: Accuracies obtained from Tables B-4 and B-5 are valid only for measurements made with the CABLE LENGTH switch set to 0m. When the CABLE LENGTH switch is set to 1m, add the errors listed in Table B-6 to the accuracies obtained from Tables B-4 and B-5.

Note: DISPLAY B function, when ESR/G is selected, depends on the CIRCUIT MODE.

Table 1-1. Specifications (Sheet 12 of 17)

Table B-4. L-ESR/G Accuracies (10kHz, 100kHz, 1MHz only)

ESR/G Range			Test Frequency				
		10kHz		100kHz	1MHz		
ESR	100kΩ	ESR:	See Note 1. 1% + 50αnS + 40nS + <u>5</u>				
G	100µS	G :					
ESR	10kΩ		See Note 1.				
G	1mS	G :	1% + .5αμS + .4μS + 5				
ESR	1kΩ	ESR:	See	Note 1.			
G	10mS	G:	$.3\% + 5\alpha\mu S + 2\mu S + 5$				
ESR	100Ω	ESR:	.1%	+ .05αΩ +	5		
G	100mS	G : 3	See Note 2.				
ESR	10Ω	ESR:	.3%	+ .5αΩ + 5			
G	1S	G : 8	See	Note 2.			

Table B-5. L-ESR/G Accuracies

ESD/C	Range	Test Frequency Range					
Loky	Range	10.1kHz to 99.5kHz 101kHz to 995kHz					
ESR	100kΩ	ESR: See Note 1.					
G	100µՏ	G: 1% + 50αnS + 60nS + <u>5</u>					
ESR	10kΩ	ESR: See Note 1.					
G	1mS	G : 1% + .5αμS + .6μS + <u>5</u>					
ESR	1kΩ	ESR: See Note 1.					
G	10mS	G : .3% + 5αμS + 3μS + <u>5</u>					
ESR	100Ω	ESR: $.1\% + 50 \text{cm}\Omega + 30 \text{m}\Omega + 5$					
G	100mS	G : See Note 2.					
ESR	10Ω	ESR: $.3\% + 5\alpha m\Omega + 6m\Omega + 5$					
G	18	G : See Note 2.					

Table 1-1. Specifications (Sheet 13 of 17)

Equations in Tables B-4 and B-5 represent:

ESR Accuracy G Accuracy

 α : Full-scale factor (= measured L value ÷ full-scale L value). For example, when measured C value is 850nH on the 1000nH range, α is 0.85.

- Note 1: ESR accuracy is ±[2 (L accuracy : measured L x 100)% of ESR reading + (G accuracy : measured G x 100)% of ESR reading + 1 count].
- Note 2: G accuracy is $\pm [2 \text{ (L accuracy } \pm \text{ measured L x } 100)\% \text{ of G reading + (ESR accuracy } \pm \text{ measured ESR x } 100)\% \text{ of G reading + 1 count].}$
- Note 3: Tables B-4 and B-5 are applicable under the following conditions:
- (1) CABLE LENGTH: 1m
- (2) Test Signal Level: HIGH (1Vrms)
- (3) Sample's D Value: ≤ 0.1
- (4) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.
- Note 4: Error doubles when LOW test signal level (20mVrms) is used.

Table B-6. Additional Measurement Error for ESR and G at 1MHz

ESR/G	1MHz
10Ω	.1% of reading + 10α m Ω
100Ω	.06% of reading + 30α m Ω
10mS	
1mS	.1% of reading
100μS	

- Note 1: Table B-6 is applicable under the following conditions:
- (1) Test Frequency: 1MHz
- (2) CABLE LENGTH: 1m
- (3) Test Signal Level: HIGH (1Vrms)
- (4) Sample's D Value: ≤ 0.1
- (5) Test Lead: Model 16048A or 16048B
- (6) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.
- Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Table 1-1. Specifications (Sheet 14 of 17)

Table B-7. ESR/G Range Selection

Inductance		Te	st Frequency Range	
Range		10kHz	10.1kHz to 100kHz	101kHz to 1MHz
1н	ESR			
411	G			
100mH	ESR		100kΩ	
TOOMIN	G		100μS	
10mH	ESR		10kΩ	
TOM	G		1mS	
1mH	ESR		1kΩ	
11101	G		10mS	
100⊔H	ESR	`	100Ω	
100μ	G		100mS	
10 μΗ	ESR		10Ω]
20µп	G		1S	L
1րH	ESR			
	G			

Table 1-1. Specifications (Sheet 15 of 17)

Impedance Measurement Accuracy

 $|Z| - \theta$ Measurement Accuracy:

| Z | Accuracy: ±[(% of reading) + (number of counts)], see Tables C-1 and C-2.

 θ Accuracy: \pm [(θ error in degrees) + (number of counts)], see Tables C-1 and C-2.

Note: Use Table C-1 when the test frequency is 10kHz, 100kHz, or 1MHz. Use Table C-2 for all other frequencies.

Note: Accuracies obtained from Tables C-1 and C-2 are valid only for measurements made with the CABLE LENGTH switch set to 0m. When the CABLE LENGTH switch is set to 1m, add the errors listed in Table C-3 to the accuracies obtained from Tables C-1 and C-2.

Table C-1. | Z | -0 Accuracies (10kHz, 100kHz, 1MHz only)

lal n	Test Frequency		
Z Range	10kHz 100kHz 1MHz		
1ΜΩ	$2\% + \frac{3}{3}$ ° + $\frac{3}{3}$ α° + $\frac{2}{2}$		
100kΩ			
10k Ω	$1\% + .2\alpha\% + \frac{3}{2}$.3° + .3\alpha° + $\frac{2}{2}$		
1kΩ			
100Ω	$.1\% + \frac{5}{.1^{\circ} + .1/\alpha^{\circ} + 2}$		
10Ω	$.3\% + \frac{10}{.2/\alpha^{\circ}} + \frac{2}{.2}$		

Table C-2. $|Z| - \theta$ Accuracies

	Test Frequency Range		
Z Range	10.1kHz to 99.5kHz 101kHz to 995kHz		
1ΜΩ	$\frac{2\%}{3} + \frac{3}{3}\alpha^{\circ} + \frac{2}{3}$		
100kΩ			
10k Ω	$.1\% + .2\alpha\% + \frac{3}{2}$ $.3^{\circ} + .3\alpha^{\circ} + \frac{2}{2}$		
1kΩ			
100Ω	$.1\% + \frac{5}{.1}$ ° + $\frac{1}{.1}$ α° + $\frac{2}{.1}$		
10Ω	$.3\% + \frac{10}{.2/\alpha^{\circ} + 2}$		

Table 1-1. Specifications (Sheet 16 of 17)

Equations in Tables C-1 and C-2 represent:

|Z| Accuracy θ Accuracy

α: Full-scale factor (= measured |Z| value ÷ full-scale |Z| value). For example, when measured |Z| value is 850Ω on the 1000Ω range, α is 0.85.

Note 1: Tables C-1 and C-2 are applicable under the following conditions:

- (1) CABLE LENGTH: 0m
- (2) Test Signal Level: HIGH (1Vrms)
- (3) Sample's D Value: ≤ 0.1
- (4) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.

Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Table C-3. Additional Measurement Error for $\cdot \mid Z \mid$ and θ at 1 MHz

Z Range	1MHz	
1ΜΩ	.5% .1/α°	
100kΩ		
10kΩ	.1% .1/α°	
1kΩ		
100Ω	.06% .03α°	
10Ω	.1% .1α°	

Note 1: Table C-3 is applicable under the following conditions:

- (1) Test Frequency: 1MHz
- (2) CABLE LENGTH: 0m
- (3) Test Signal Level: HIGH (1Vrms)
- (4) Sample's D Value: ≤ 0.1
- (5) Test Lead: Model 16048A and 16048B
- (6) Zero offset adjustment has been performed with the OPEN and SHORT terminations of the Model 16074A.

Note 2: Error doubles when LOW test signal level (20mVrms) is used.

Table 1-1. Specifications (Sheet 17 of 17)

OPTIONS

Option 001:

Internal DC Bias. Equips the standard 4277A with a variable 0 to $\pm 40V$ dc voltage source for biasing DUTs connected to the UNKNOWN terminals. Output voltage can be set from the front panel or via the HP-IB.

Bias Control Range and Accuracy:

Voltage Range	Step	Temperature	Accuracy
10.0 - 40.0V	100mV	23°C±5°C	±(0.5% of rdg + 35mV)
10.0 - 40.01	100111	0°C - 55°C	±(1% of rdg + 70mV)
.00 - 9.99V	10mV	23°C±5°C	±(0.3% of rdg + 10mV)
.00 5.55.	10.11	0°C - 55°C	±(1% of rdg + 20mV)
-9.9901V	-9.9901V 10mV	23°C±5°C	±(1% of rdg + 10mV)
-5.55	-5.5501V 10mV		±(2% of rdg + 20mV)
-40.010.0V	100mV	23°C±5°C	±(1% of rdg + 35mV)
		0°C - 55°C	±(2% of rdg + 70mV)

Output Impedance: 1040Ω±10%

Bias Voltage Monitor:

Bias voltage across the DUT can be monitored at the EXT INPUT/INT MONITOR BNC connector on the rear panel. INT MONITOR output impedance is approximately 730Ω .

Output Characteristics:

Voltage Range	Output Current
0 - ±25V	5mAmax.
±25 - ±40V	1mAmax.

Note: Measurement accuracies are

guaranteed when output current is

maximum.

Option 002: COMPARATOR/HANDLER

INTERFACE

Contents:

Model 16064A COMPARATOR/ HANDLER INTERFACE (Includes the 16064-66502 Interface board assembly and 1251-0084 36-pin male Amphenol connector)

Comparator Function:

Compares measured values to 9 sets (Bins) of stored high/low limits. Displays LOW/IN/HIGH judgements and bin number.

Handler Interface Function: Outputs comparison results and handler control signals (open-collectors, TTL). Detects KEY LOCK and EXT TRIGGER signals sent from component handler.

Option 907: Front handle kit

(Part No. 5061-0090)

Option 908: Rack flange kit

(Part No. 5061-0078)

Option 909: Rack flange and handle kit

(Part No. 5061-0084)

Option 910: Extra manual

Accessories Supplied

Test Fixture:

16047A Test Fixture. Includes three kinds of contact inserts

Power Cord: HP Part No. 8120-1378

Fuse:

Part No. 2110-0007 (100V/120V) Part No. 2110-0360 (220V/240V)

Protective Fuse:

Part No. 2110-0011 (for dc bias input)

Accessories Available

HP-IB Cable:

10833A (1m) 10833C (4m) 10833B (2m) 10833D (0.5m)

Test Fixtures and Test Leads:

Refer to Table 1-3.

Table 1-2. Supplemental Performance Characteristics (Sheet 1 of 2)

Supplemental Performance Characteristics

Measurement Accuracies:

Applicable at all test frequencies except lMHz

Additional Error for 1m CABLE LENGTH Mode:

Add the errors listed in Table 1.

Table 1.

Measurement Function	Additional Error
L, C, Z	.05f ² % of reading
D	.0005af
θ	.05af°
ESR, G	$5\alpha f \times 10^{\beta-4}$ counts

where,

α: Full-scale factor

 β : Number of display digits

f: Test frequency in MHz

Note: Error doubles when LOW test signal level (20mVrms) is used.

Use Table 2 for C measurements on the 1pF range.

Table 2.

Measurement Parameter	Additional Error
С	.4f ² % of reading
D	αf x 10 ⁻³
ESR, G	10af counts

α: Full-scale factor

β: Number of display digits

f: Test frequency in MHz

Note: Table 2 does not apply when LOW test signal level (20mVrms) is used.

Use Table 3 for |Z| measurements on the $1M\Omega$ range.

Table 3.

Measurement Function	Additional Error
Z	f ² % of reading
θ	.laf°

 α : Full-scale factor

f: Test frequency in MHz

Note: Table 2 does not apply when LOW test signal level (20m Vrms) is used.

Use Table 4 when 2-meter cables are used to connect the DUT to the UNKNOWN terminals.

Table 4.

Measurement Function	Additional Error
L, C, Z	.2f ² % of reading
D	.002af
θ	.2af°
ESR, G	$20\alpha f \times 10^{\beta-4} counts$

 α : Full-scale factor

β: Number of display digits

f: Test frequency in MHz

Note: Table 4 does not apply when

- (1) C measurement is made on the 1pF range.
- (2) C measurement is made on the 10pF range and LOW test signal level is used.
- (3) |Z| measurement is made on the $1\,\mathrm{M}\Omega$ range.

Note: Error doubles when LOW test signal level (20mVrms) is used.

Table 1-2. Supplemental Performance Characteristics (Sheet 2 of 2)

Additional Measurement Error of Test Fixtures:

Maximum additional errors attributable to
the test fixtures:

Mode1	Residual Impedance
16047A, 16047C, 16048A, 16048B, 16048D, 16065A	-
16048C	C <app. 5pf<br="">L<app. 200nh<br="">R<app. 10mω<="" td=""></app.></app.></app.>
16034B	C <app. 0.02pf<br="">L<app. 30nh<br="">R<app. 50mω<="" td=""></app.></app.></app.>

Additional Measurement Error when D>0.01:
Add 5D% (when LOW test signal level is used, 10D%) to the accuracies for HIGH SPEED C and HIGH SPEED L.

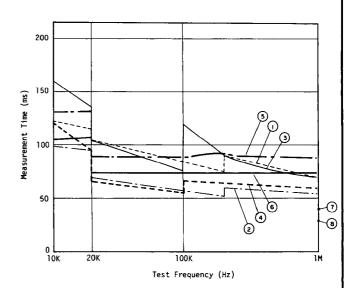
Additional Measurement Error when D > 0.1: Multiply C, L, or D accuracy by $(1 + D^2)$

Settling Time after measurement range change: Approximately 60ms

Settling Time after frequency change: Approximately 300ms

Settling Time after Test Signal Level Change: Approximately 60ms

Test Signal Settling Time in DC Bias applications:


The same as dc bias voltage settling time

DC Bias Voltage Settling Time:
Typical value for C measurement (C < 2000pF)

Bias Voltage	Settling Time
99% of setting	7.5ms
99.9% of setting	25ms
99.99% of setting	40ms

Measurement Time:

Typical characteristics are shown in the figure below:

Number	Measurement Function	Measurement Speed Mode
1	С	MED
2	С	FAST
3	L	MED
4	L	FAST
5	Z	MED
6	Z	FAST
7	HIGH SPEED C- HIGH SPEED L	MED
8	HIGH SPEED C HIGH SPEED L	FAST

Continuous Memory: Approximately 2 weeks (at 23 °C±5 °C)

1-30. ACCESSORIES SUPPLIED

1-31. The standard HP Model 4277A LCZ Meter, along with its furnished accessories, is shown in Figure 1-1. The furnished accessories are also listed below:

16047 A Test Fixture

(Refer to Table 1-3 for a brief description)

Power Cable ···· HP Part No. 8120-1378

Fuse HP Part No. 2110-0007

or 2110-0360

1-32. ACCESSORIES AVAILABLE

1-33. In addition to the furnished 16047A Test Fixture, seven special purpose test fixtures and test leads are available. Each is intended for a particular measurement or DUT type, and all were designed with careful consideration to accuracy, reliability, ease of use, and compatibility with other HP instruments. A brief description of each available accessory is given in Table 1-3.

Table 1-3. Accessories Available (Sheet 1 of 3)

Model **Description** 16047A (furnished) Test Fixture (direct attachment type) for measurement of either axial-or radial-lead components. Three kinds of contact inserts are furnished: (1) For axial-lead components, (HP P/N: 16061-70022) For general radial-lead components, (HP P/N: 16061-70021) For radial short-lead components, (HP P/N: 16047-65001) DC bias up to ±40V* can be applied. Test Fixture (direct attachment type) designed 16047C especially for high frequency measurements requiring high accuracy. Two screw knobs facilitate and ensure optimum contact between the test fixture electrodes and the sample leads. DC bias up to ±40V* can be applied. Test Fixture (tweezer type) for measurement of 16034B miniature leadless components such as chip Employs a three terminal capacitors. configuration tweezer probe suitable for high impedance (above 50Ω) measurements. DC bias up to ±40V* can be applied. Cable length: 1m

Table 1-3. Accessories Available (Sheet 2 of 3)

Model Description Test Leads (four terminal pair) with BNC 16048A connectors for connecting user-fabricated test fixtures. DC bias up to ±40V* can be applied. Cable length: 1m 6660 16048B Test Leads (four terminal pair) with miniature connectors suitable for connecting user-fabricated test fixtures systems in applications. DC bias up to ±40V* can be applied. Cable length: 1m 16048C Test Leads with dual alligator clips for testing components of non-standard shapes and sizes at frequencies below 100kHz. Applicable measurement ranges: Capacitance > 1000pF Inductance $> 100 \mu H$ DC bias up to ±40V* can be applied. Cable length: 1m

Table 1-3. Accessories Available (Sheet 3 of 3)

Model	Description
16048D	Double-shielded Test Leads (four terminal pair) with BNC connectors for connecting user-fabricated test fixtures. DC bias up to ±40V* can be applied. Cable length: 2m
16065A	Test Fixture (cable connection type) for measurement of either axial- or radial-lead components at frequencies between 50Hz and 2MHz. Three kinds of contact inserts are furnished (same as those for the 16047A Test Fixture). DC bias up to ±200V can be applied (a protective cover provides for operator safety). Cable length: Approximately 40cm

^{*} Though " ± 35 V DC MAX" is indicated on the test fixtures, they are capable of handling dc bias voltages up to ± 40 V when used with the 4277A.

SECTION II

2-1. INTRODUCTION

2-2. This section provides installation instructions for the Model 4277A LCZ Meter. It also includes information on initial inspection and damage claims, preparation for using the 4277A, and packaging, storage, and shipment.

2-3. INITIAL INSPECTION

The 4277A LCZ Meter, as shipped from the factory, meets all the specifications listed in Table 1-1. Upon receipt, inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have completeness and the checked for instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. procedures for checking the general electrical operation are given in Section III (Paragraph 3-5 SELF TEST) and the procedures for checking the 4277A LCZ Meter against its specifications are given in Section IV. First, do the self test. If the 4277A is electrically questionable, then do the Performance Tests to determine whether the 4277A has failed or not.

If the contents are incomplete, if there is mechanical damage or defects (scratches, dents, broken switches, etc.), or if the performance does not meet the self test or performance tests, notify the nearest Hewlett-Packard office (see list at back of this manual). The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE

2-6. POWER REQUIREMENTS

2-7. The 4277A requires a power source of 100, 120, 220 Volts ac ±10%, or 240 Volts ac ±5%-10%, 48 to 66Hz single phase; power consumption is 75VA maximum.

WARNING

IF THE INSTRUMENT IS TO BE ENERGIZED VIA AN EXTERNAL AUTOTRANSFORMER UNIT FOR VOLTAGE REDUCTION, BE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SUPPLY.

2-8. Line Voltage and Fuse Selection

CAUTION

BEFORE TURNING THE 4277A LINE SWITCH TO ON, VERIFY THAT THE INSTRUMENT IS SET TO THE VOLTAGE OF THE POWER TO BE SUPPLIED.

2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection switch and the proper fuse are factory installed for the voltage appropriate to instrument destination.

CAUTION

USE PROPER FUSE FOR LINE VOLTAGE SELECTED.

CAUTION

MAKE SURE THAT ONLY FUSES FOR THEREQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED **FUSES** ANDTHE SHORT-CIRCUITING OF FUSE-HOLDERS MUST BE AVOIDED.

2-10. POWER CABLE

2-11. To protect operating personnel, the National Electrical Manufacturer's Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 4277A is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable is the ground wire.

2-12. To preserve the protection feature when operating the instrument from a two contact outlet, use a three prong to two prong adapter (HP Part No. 1251-8196) and connect the green pigtail on the adapter to power line ground.

CAUTION

THE MAINS PLUG MUST ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT PROTECTIVE CONDUCTOR (GROUNDING).

2-13. Figure 2-2 shows the available power cords, which may be used in various countries including the standard power cord furnished with the instrument. HP Part number, applicable standards for power plug, power cord color, electrical characteristics and countries using each power cord are listed in the figure. If assistance is needed for selecting the correct power cable, contact the nearest Hewlett-Packard office.

2-14. INTERCONNECTIONS

2-15. When an external dc bias source is used, set the DC BIAS select switch on the rear panel to EXT. The output from the external bias source should be connected to EXT INPUT/INT MONITOR connector. The external dc bias fuse is installed in EXT DC BIAS FUSE Holder on rear panel to protect the instrument from excessive current. Fuse rating is as follows:

1/16A, 250V (HP Part No: 2110-0011)

CAUTION

MAKE SURE THAT ONLY FUSES OF THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED FUSES AND THE SHORT-CIRCUITING OF FUSE-HOLDERS MUST BE AVOIDED.

2-16. OPERATING ENVIRONMENT

2-17. Temperature. The instrument may be operated in temperatures from 0 °C to +55 °C.

2-18. Humidity. The instrument may be operated in environments with relative humidities to 95% at 40°C. However, the instrument must be protected from temperature extremes which cause condensation within the instrument.

2-19. INSTALLATION INSTRUCTIONS

2-20. The HP Model 4277A can be operated on the bench or in a rack mount. The 4277A is ready for bench operation as shipped from the factory. For bench operation a two-leg instrument stand is used. For use, the instrument stands are designed to be pulled towards the front of instrument.

100V/120V OPERATION			
100V ~ ¬_ [¬		FUSE SELECTION	
100V ~]- 120V ~]- 220V ~]-	Line Voltage	Fuse Rating	HP Part No.
240V ~	100V/120V	1.0AT, 250V, Slow Blow	2110-0007
100V ~]- 120V ~]- 220V ~]-	220V/240V	0.75AT, 250V, Slow Blow	2110-0360

Figure 2-1. Voltage and Fuse Selection.

Model 4277A SECTION II

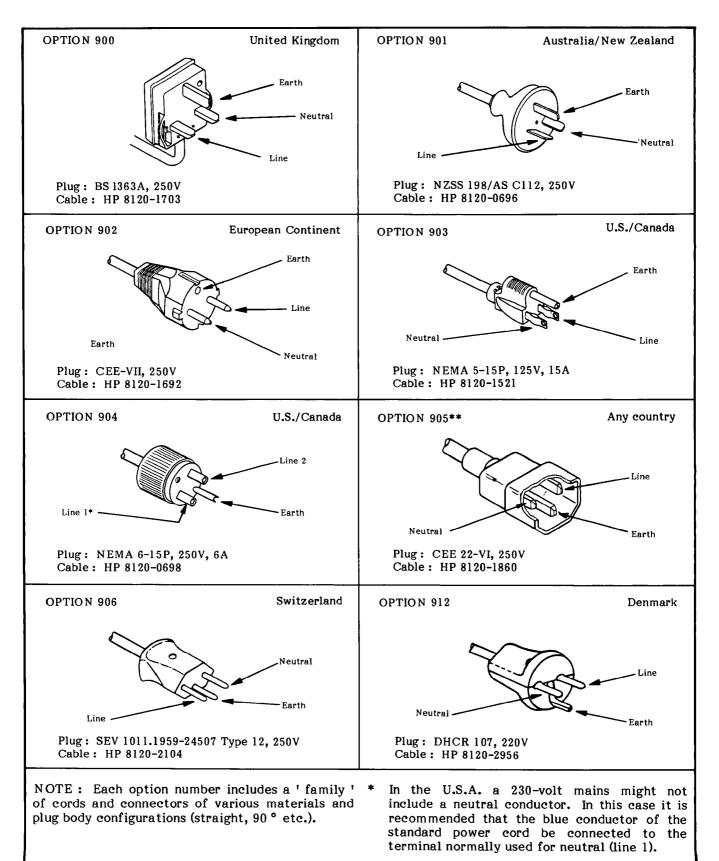


Figure 2-2. Power Cables Supplied.

- 2-21. Installation of Options 907, 908 and 909.
- 2-22. The 4277A can be installed in a rack and be operated as a component of a measurement system. Rack mounting information for the 4277A is presented in Figure 2-3.
- 2-23. STORAGE AND SHIPMENT

2-24. ENVIRONMENT

2-25. The instrument may be stored or shipped in environments within the following limits:

Temperature -40 °C to +70 °C Humidity to 95% at 40 °C

The instrument must be protected from temperature extremes which cause condensation inside the instrument.

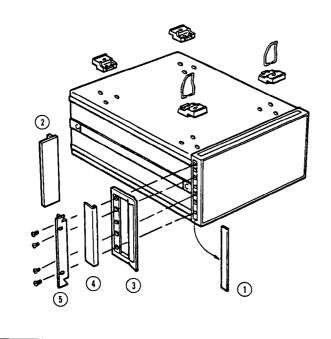
2-26. PACKAGING

- 2-27. Original Packaging. Containers and materials identical to those used in factory packaging are available from Hewlett-Packard. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.
- 2-28. Other Packaging. The following general instructions should be used for re-packing with commercially available materials:
 - a. Wrap instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach tag indicating type of service required, return address, model number, and full serial number.
 - b. Use strong shipping container. A double-wall carton made of 350 pound test material is adequate.
 - c. Use enough shock absorbing material (3 to 4 inch layer) around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard.
 - d. Seal shipping container securely.
 - e. Mark shipping container FRAGILE to ensure careful handling.

f. In any correspondence, refer to instrument by model number and full serial number.

2-29. OPTION INSTALLATION

2-30. Installation procedures for DC Bias option (Option 001) and Comparator/Handler Interface option (Option 002) are given in Figure 2-4.


2-31. POWER FAILURE MONITOR INSTALLATION

2-32. To use the power failure monitor signal, you must solder two wires to a jumper on the mother board, remove a cap from a hole on the rear panel, and bring the wires out through the hole. The procedure is given below. A simplified drawing of the open collector circuit, a timing diagram, and the locations of the jumper and hole are shown in Figure 2-6. Refer to paragraph 2-114 for a description of the power failure monitor signal.

Procedure:

- 1. Turn off the 4277A.
- Disconnect the 4277A from the ac power source.
- 3. Remove the top cover.
- 4. Disconnect the brown 4-terminal connector from the A5 board.
- 5. Remove the two screws that secure the A5 board to the chassis.
- 6. Remove the A5 board.
- 7. Solder a wire to each terminal of A6J3. The location of A6J3 is shown in Figure 2-6 (c).
- 8. Remove the cap from the access hole in the rear panel, as shown in Figure 2-6 (d).
- 9. Thread the wires first through the teflon clamp (securing the wires from A6J1) on the A6 board, and then through the access hole in the rear panel.
- 10. Reinstall the A5 board, reconnect the brown 4-terminal connector to the A5 board, and replace the top cover.

Option	Kit Part Number	Parts Included	Part Number	Q'ty	Remarks
907	Handle Kit 5061-0090	Front Handle Trim Strip X8-32 x 3/8 Screw	③ 5060-9900 ④ 5020-8897 2510-0195	2 2 8	9.525mm
908	Rack Flange Kit 5061-0078	Rack Mount Flange X8-32 x 3/8 Screw	② 5020-8863 2510-0193	2 8	9.525mm
909	Rack Flange & Handle Kit 5061-0084	Front handle Rack Mount Flange X8-32 x 3/8 Screw	③ 5060-9900 ⑤ 5020-8875 2510-0194	2 2 8	15.875mm

- Remove adhesive-backed trim strips (1) from side at right and left front of instrument.
- 2. HANDLE INSTALLATION: Attach front handle ③ to sides at right and left front of instrument with screws provided and attach trim ④ to handle.
- 3. RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided.
- 4. HANDLE AND RACK MOUNTING: Attach front handle 3 and rack mount flange 5 together to sides at right and left front of instrument with screws provided.
- 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar).

Figure 2-3. Rack Mount Kit.

11. Connect the pull-up resistor and external voltage source as shown in Figure 2-6 (a).

Note

A +5V is recommended but higher voltage can be used as long as the current through A1T5 and A1Q4 does not exceed 25mA.

CAUTION: BEFORE PROCEEDING WITH INSTALLATION OF OPTION(S), TURN OFF THE INSTRUMENT AND DISCONNECT THE

AC POWER CORD.

	OPTION 001 DC BIAS SUPPLY (0 to ±40V)	OPTION 002 COMPARATOR/ HANDLER INTERFACE
Option Parts	Board Assembly A22 04276-66522	Comparator 16064A Includes: Interface Board Assembly 16064-66502 and 36-pin male Amphenol connector 1251-0084
Installation Procedure (after removing top cover)	1. Remove the rear panel access plate shown below.	1. Remove the rear panel access plate shown below.
	 Insert the dc bias board (P/N: 04276-66522) into the access hole. Insert the male edge connector of the interface board into the female edge connector of the 4277A mother board and push firmly until the interface board is completely seated. Reinstall the screws removed in step (1). 	 Insert the interface board (P/N: 16064-66502) into the access hole. Insert the male edge connector of the interface board into the female edge connector of the 4277A mother board and push firmly until the interface board is completely seated. Reinstall the screws removed in step 1. Connect the 16064A keyboard cable to the connector on the interface board (installed in step 3). Adjust the power supply in accordance with the procedure given in Figure 2-5.

Figure 2-4. Option Installation.

Model 4277A SECTION II

- 1. Connect the 4277A to the ac power line.
- 2. Turn on the instrument. ("16064" should be displayed on DISPLAY B.)
- 3. Connect a DVM (HP 3478A is recommended) to AlTP1 and GND as shown below.
- 4. Adjust "V-ADJ" on the A4 board until the reading on the DVM is 5.10V±0.02V.

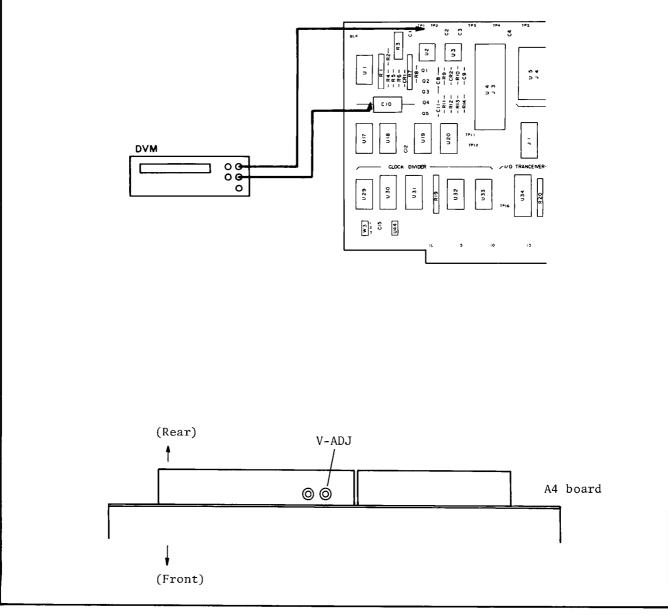


Figure 2-5. Power Supply Adjustment After Installing Option 002.

SECTION II Model 4277A

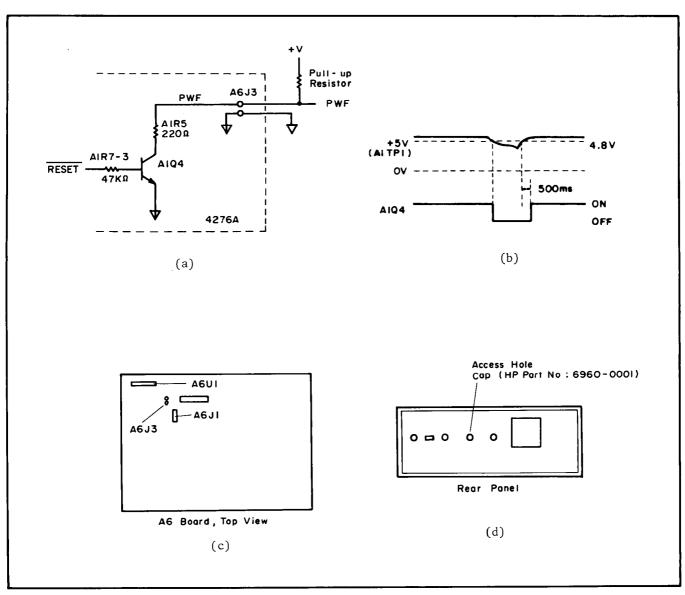


Figure 2-6. Power Failure Monitor Installation.

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides all the information necessary to operate the Model 4277A LCZ Meter. Included are descriptions of the front-and rear-panels, displays, lamps and connectors; discussions on operating procedures and measuring techniques for various applications; and instructions on the instrument's SELF TEST function. Warnings, Cautions, and Notes are given throughout; they should be observed to insure the safety of the operator and the serviceability of the instrument.

WARNING

BEFORE THE INSTRUMENT SWITCHED ON, ALL PROTECTIVE TERMINALS, **EXTENSION** EARTH CORDS, AUTO-TRANSFORMERS AND DEVICES CONNECTED IT SHOULD BE CONNECTED TO A EARTH GROUNDED PROTECTIVE SOCKET. ANY INTERRUPTION OF PROTECTIVE EARTH THE GROUNDING WILL CAUSE POTENTIAL SHOCK HAZARD THAT COULD RESULT IN **SERIOUS** PERSONAL INJURY.

ONLY FUSES WITH THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE SHOULD BE USED. DO NOT USE REPAIRED FUSES OR SHORTED FUSEHOLDERS. TO DO SO COULD CAUSE A SHOCK OR FIRE HAZARD.

CAUTION

BEFORE THE INSTRUMENT IS SWITCHED ON, IT MUST BE SET TO THE VOLTAGE OF THE POWER SOURCE (MAINS), OR DAMAGE TO THE INSTRUMENT MAY RESULT.

3-3. PANEL FEATURES

3-4. Figures 3-1 and 3-2 identify and briefly describe the purpose of each key, indicator, and connector on the front panel and rear panel, respectively. More detailed information on front panel displays and controls is given starting in paragraph 3-5.

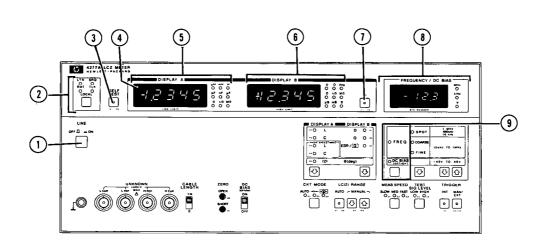
3-5. SELF TEST

3-6. The self test function confirms correct operation of the instrument's basic functions and facilitates troubleshooting. It consists of three parts: (1) ROM/RAM Test, (2) Display Test, and (3) Analog Circuit Test. Each is described in paragraphs 3-7 through 3-11.

3-7. ROM/RAM TEST

3-8. The ROM/RAM Test is performed each time the instrument is turned on. During this test, all ROMs and RAMs in the instrument's digital control section are tested using a check-sum test and a read/write test (RAMs only). If a malfunction is detected, the test will stop and an error-code will be displayed on DISPLAY A. If the ROMs and RAMs are functioning properly, the instrument will display the HP-IB address (or output data format if the HP-IB control switch is set to TALK ONLY) on DISPLAY A and the option annunciations on DISPLAY B and the FREQUENCY/DC BIAS DISPLAY. Error-codes are described paragraph 3-20.

Note


If a ROM/RAM test error code, E61 through E68, appears on DISPLAY A when the instrument is turned on, contact the nearest Hewlett-Packard Sales or Service Office for repairs.

Note

ROM/RAM code E68 test error instrument's indicates that the memory feature is not continuous functioning properly. All other functions. instrument including measurement, are not affected.

3-9. DISPLAY TEST

3-10. All LED lamps and 7-segment displays on the front panel are lit for approximately one second when the instrument's self-test function is initiated from the front panel or via the HP-IB. This test is repeated until the self-test function is turned off.

1) LINE OFF/ON Switch:

Applies ac line power to the instrument when set to the ON (in) position. Removes ac line power when set to the OFF (in) position.

ig(2ig) HP-IB Status Indicators and LOCAL Key:

These four LED lamps--SRQ, LISTEN, TALK, and REMOTE--indicate the status of the 4277A when it is interfaced with a controller via the HP-IB.

The LOCAL key, when pressed, releases the instrument from REMOTE (HP-IB) control and enables front panel control. The LOCAL key is disabled (does not function) when the instrument is set to "local lockout" by the controller.

(3) SELF TEST Key and Indicator:

This key initiates the instrument's SELF TEST function. During SELF TEST (when the indicator is on), nine tests that check the basic operation of the instrument are automatically performed. SELF TEST is repeated until this key is pressed again. If a fault is detected, an error code will be displayed on DISPLAY A (5). A complete description of the SELF TEST function is given in paragraph 3-5; error codes are described in paragraph 3-20.

(4) Trigger Lamp:

Comes on each time the instrument is internally, externally, or manually triggered. Trigger mode is set by the TRIGGER keys (12).

(5) DISPLAY A:

Displays measured values of inductance, capacitance, or impedance magnitude with a maximum 4-1/2 digits; maximum display is 19999. Number of display digits depends on instrument control settings. The nine LED lamps located to the right of the display are the engineering unit indicators for displayed values. Measurement error messages—OF, UF, CF—operation error codes, SELF TEST error codes, and the instrument's HP-IB address are also displayed on this display.

If the instrument is equipped with Option 002, Comparator/Handler Interface, the LOW LIMITS keyed in from the 16064A will be displayed on this display when the 16064A is set to ENABLE and RUN is off.

Decimal point location and engineering unit indicator lamp change when the $LC \mid Z \mid$ RANGE (16) changes.

6 DISPLAY B

Displays measured values of dissipation factor, quality factor, equivalent series resistance, conductance or impedance phase angle with a maximum 4-1/2 digits; maximum display is 10000 for quality factor, 18000 for phase, and 19999 for all other parameters. Number of display digits depends on instrument control settings. The nine LED lamps located to the right of the display are the engineering unit indicators for displayed values.

Measurement error messages-OF, UF, and CF-are also displayed on this display. When the DISPLAY A Function (18) is set to HIGH SPEED L or HIGH SPEED C, or when an error code is displayed on DISPLAY A (5), this display is blanked (turned off) by the microprocessor.

If the instrument is equipped with Option 002, Comparator/Handler Interface, and if the 16064A comparator is connected, the number 16064 will be displayed on this display when the instrument is turned on. Also, the HIGH LIMITS keyed in from the 16064A will be displayed on this display when the 16064A is set to ENABLE and RUN is off.

(7) \triangle Key and Indicator:

This key enables deviation (Δ) measurements on both displays. When this key is pressed, the values displayed on DISPLAY A (5) and DISPLAY B (6) are stored as reference values. The difference between values obtained in subsequent measurements and the stored reference values is calculated and displayed on each display. The formula used to calculate the deviation is

A-B

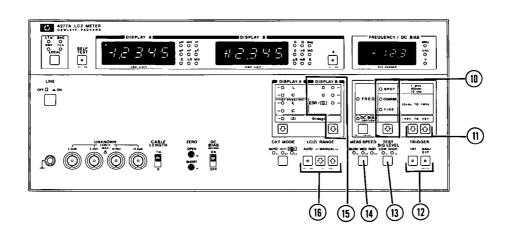
Where A is the measured value of the device under test and B is the stored reference value.

LC | Z | RANGE (6) is set to MANUAL when this key is pressed.

Also, the deviation measurement function is turned off by pressing this key again, or by changing the DISPLAY A function (8), DISPLAY B function (5), LC | Z | RANGE (6), or CIRCUIT MODE (7). It may be turned off also if the test frequency is changed when the DISPLAY B function is ESR/G.

(8) FREQUENCY/DC BIAS Display:

Displays test frequency or DC bias voltage (Option 001 only) with 3 digits. The three LED lamps located to the right of the display are unit indicators for displayed values. On instruments equipped with Option 002, Comparator/Handler Interface, bin numbers are displayed on this display when the comparator is set to RUN. Also, on Option 001 instruments, the number 001 is briefly displayed here when the instrument is turned on.


(9) FREQUENCY/DC BIAS Select Key and Indicators:

This key sets the FREQUENCY/DC BIAS Display (8), the SPOT/COARSE/FINE Select key (10), and the FREQUENCY/DC BIAS Step Control Keys (11) to FREQUENCY control mode or DC BIAS control mode. The selected control mode is indicated by the corresponding LED lamp.

FREQ: When this LED lamp is on, frequency is displayed on the FREQUENCY/DC BIAS Display and is controlled by the SPOT/COARSE/FINE Key and the FREQUENCY/DC BIAS Step Control Keys.

DC BIAS: When this LED lamp is on, DC bias voltage is displayed on the FREQUENCY/DC BIAS Display and is controlled by the FREQUENCY/DC BIAS Step Control Keys.

FREQUENCY control mode and DC BIAS control mode are mutually exclusive, and DC BIAS can be selected only if the instrument is equipped with Option 001.

SPOT/COARSE/FINE Select Key and Indicators:

This key selects the SPOT, COARSE, or FINE vernier mode for frequency changes mode by the FREQUENCY/DC BIAS Step Control Keys (1). The selected vernier mode is indicated by the corresponding LED lamp. Frequencies possible in each vernier mode are listed below:

SPOT: 10kHz, 100kHz, 1MHz

COARSE: 10kHz to 100kHz in 10kHz Steps

100kHz to 1MHz in 100kHz steps

FINE: 10kHz to 20kHz in 100Hz steps

20kHz to 50kHz in 200Hz steps 50kHz to 100kHz in 500Hz steps 100kHz to 200kHz in 1kHz steps 200kHz to 500kHz in 2kHz steps

500kHz to 1MHz in 5kHz steps

Note

When the DISPLAY A Function (18) is set to HIGH SPEED L or HIGH c, when orFREQUENCY/DC BIAS Select Key (9) is set to DC BIAS mode, this key is disabled and the SPOT, COARSE, and FINE indicators are turned off.

(11) FREQUENCY/DC BIAS Step Control Keys:

These keys— ♥ and ♠ —are used in conjunction with the FREQUENCY/DC BIAS Select Key 9 and the SPOT/COARSE/FINE Select Key 10 to set the test frequency and DC bias voltage (Option 001 instruments only). When FREQUENCY mode is selected by the FREQUENCY/DC BIAS Select Key (9), test frequency is increased in accordance with the selected vernier mode (SPOT, COARSE, FINE) each time the pressed, and is decreased each time the key is pressed. These keys control DC bias in a similar manner when DC BIAS mode is selected by the FREQUENCY/DC BIAS Select Key(9).

When either of these keys is pressed and held, the value displayed on the FREQUENCY/DC BIAS Display will continuously change in the indicated direction. The actual value, however, will not change until the key is released.

(12) TRIGGER Keys:

These keys select the trigger mode for triggering measurement (Internal or Manual/External):

INT:

Internal trigger signal enables instrument to make repeated automatic measurements.

MAN/EXT:

Measurement is triggered each time this key is pressed. Measurement data is held until the next time the key is pressed. Or in this mode measurement is triggered by an external trigger signal applied to the rear panel EXT TRIGGER connector (4) in Figure 3-2).

(3) TEST SIGNAL LEVEL Selector Key and Indicators:

This key selects two test signal levels: HIGH and LOW. HIGH level is 1Vrms and LOW level is 20mVrms. The selected test signal level is indicated by the corresponding LED lamp.

(4) MEASUREMENT SPEED Select Key and Indicators:

This key selects three measurement speeds: MEDIUM or FAST. Actual measurement speed depends on test frequency, LC | Z | range (16), DISPLAY A Function (18), and the value of the device under test. The selected measurement speed mode is indicated corresponding LED lamp.

SLOW: Measurement speed is approximately 1/4 that of medium measurement speed.

MED: Measurement speed is approximately 14 measurements per second in C-G measurement mode.

FAST: Measurement speed is approximately one and a half that of medium measurement speed.

(5) DISPLAY B Function Select Key and Indicators:

This key, ③, selects the measurement parameter for display on DISPLAY B 6. The selected parameter is indicated by the corresponding LED lamp. Pressing this key shifts the selected parameter in a top-to-bottom sequence. Selectable parameters are as follows:

D: Measures the dissipation factor of the DUT. DISPLAY A Function (18) must be set to L (inductance) or C (capacitance).

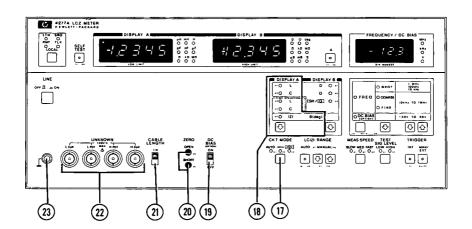
Q: Measures the quality factor of the DUT. DISPLAY A Function (18) must be set to L (inductance) or C (capacitance). Q values are calculated as the reciprocal dissipation factor.

ESR/G: Measures the equivalent series resistance or conductance of the DUT. DISPLAY A Function (18) must be set to L (inductance) or C (capacitance). ESR is selected when CIRCUIT MODE (17) is set to CIRCUIT MODE (17) is set to

(6) LC | Z | RANGE Selector Keys and Indicator:

These keys select the measurement range and the ranging method for inductance, capacitance and impedance measurements.

AUTO (when indicator is lit):


Optimum range for the DUT's value is automatically selected.

MANUAL (when indicator is not lit):

Measurement range is fixed (even when the DUT is changed). Manual ranging is done by pressing the adjacent DOWN (②) or UP (④) key.

Note

Pressing the DOWN or UP key sets the ranging mode to MANUAL even if the ranging mode was initially set to AUTO.

(17) CIRCUIT MODE Select Key and Indicators:

This key selects the measurement circuit mode to be used during measurement. The selected circuit mode is indicated by the corresponding LED lamp.

•--- Selects equivalent series circuit.

: Selects equivalent parallel circuit.

(8) DISPLAY A Function Select Key and Indicators:

This key, \odot , selects the measurement parameter for display on DISPLAY A \odot . The selected parameter is indicated by the corresponding LED lamp. Pressing this key shifts the selected parameter in a top-to-bottom sequence. The selectable parameters are as follows:

- L: Measures inductance and—depending on the setting of DISPLAY B Function (15)--D (dissipation factor), Q (quality factor), or ESR/G (equivalent series resistance or equivalent parallel conductance).
- C: Measures capacitance and-depending on the setting of DISPLAY B Function (15)--D (Dissipation factor), Q (quality factor), or ESR/G (equivalent series resistance or equivalent parallel conductance).

HIGH SPEED L (1MHz):

Measures only inductance at 1MHz, which is set automatically when this function is selected.

HIGH SPEED C (1MHz):

Measures only capacitance at 1MHz, which is set automatically when this function is selected.

$|Z| - \theta \text{ (deg)}$:

Measures impedance magnitude and phase angle. The results are displayed on DISPLAY A (|Z|) and DISPLAY B (θ) to provide a polar representation ($|Z| \perp \theta$) of the DUT's impedance.

Figure 3-1. Front Panel Features (Sheet 5 of 6).

(19) DC BIAS SWITCH:

On instruments equipped with Option 001, DC BIAS, this switch turns the internal DC bias source on and off. When this switch is set to ON and the DC BIAS Select Switch (2) in Figure 3-2) on the rear panel is set to INT, selected voltage the DCFREQUENCY/DC BIAS Step Control Keys (11) is output from the Hour UNKNOWN terminal (22). When set to OFF, this switch turns off the internal DC bias source; no DC voltage is output from the HCUR UNKNOWN terminal (22), and "OFF" will be briefly displayed on the FREQUENCY/DC BIAS Display (8) each time a new DC bias voltage is set by the FREQUENCY/DC BIAS Step Control Keys (1) or via the HP-IB.

Note

This switch controls the internal DC bias source only. It does not control external DC bias voltage applied to the EXT INPUT/INT MONITOR connector (3) in Figure 3-2) on the rear panel. Also, this switch is not HP-IB programmable.

20 ZERO Offset:

These buttons perform ZERO offset compensation (OPEN and SHORT) for the residuals of the test fixture, test leads, and measurement circuit. ZERO offset is performed at the following spot frequencies:

1MHz, 900kHz, 700kHz, 505kHz, 202kHz, 100kHz, 50.5kHz, 20.2kHz, and 10kHz.

OPEN:

If this button is pressed when the test fixture or test leads are terminated open, measured values at this time are stored as residual admittance data.

SHORT:

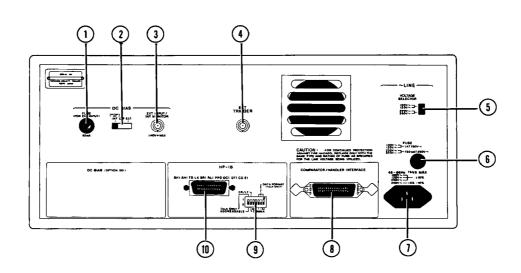
If this button is pressed when the test fixture or test leads are shorted, measured values at this time are stored as residual impedance data.

(21) CABLE LENGTH Switch:

This switch facilitates balancing of the measuring bridge circuit and minimizes measurement errors when the standard 1 meter test leads are used.

- lm: Set the switch to this position when using the standard 1 meter test leads. Appropriate compensation is made for propagation delay and phase error caused by the test leads in high frequency measurements.
- Set the switch to this position when using a direct attachment type test fixture, such as the 16047A (connects to the UNKNOWN terminals (22)).

Note


This switch is not HP-IB programmable.

(22) UNKNOWN Terminals:

These four BNC connectors provide the means to connect DUT's in a four-terminal pair configuration: High current terminal (H_{CUR}), High potential terminal (H_{POT}), Low potential terminal (L_{CUR}). Four-terminal pair test fixtures attach directly to these terminals.

(23) GUARD Terminal:

This terminal is tied to the instrument's chassis and can be used in measurements that require guarding.

(1) EXT DC BIAS FUSE Holder:

External DC bias fuse is installed in this holder. The fuse must be installed when an external bias source is used. Fuse rating is 1/16A, 250V (HP P/N: 2110-0011).

(2) DC BIAS Select Switch:

This switch selects the DC bias source that will be used for biasing DUTs connected to the UNKNOWN terminals.

INT: On instruments equipped with Option 001, DC BIAS, the DC voltage output from the internal DC bias source will be applied to the DUT when the DC BIAS Switch (19 in Figure 3-2) is set to ON.

OFF: No DC bias voltage will be applied to the DUT.

EXT: DC voltage provided by an external voltage source connected to the EXT INPUT/INT MONITOR Connector 3 will be applied to the DUT regardless of the setting of the DC BIAS Switch (19 in Figure 3-2). Maximum allowable voltage is ±40V.

(3) EXT INPUT/INT MONITOR Connector:

The function of this connector depends on the setting of the DC BIAS Select Switch (2). When the DC BIAS Select Switch (2) is set to EXT, this connector is the input terminal for an external DC voltage source. When the DC BIAS Select Switch (2) is set to INT, this connector is the monitor output terminal for the internal DC bias source (Option 001 instruments only).

(4) EXT TRIGGER Connector:

This connector is for external trigger input. TRIGGER key on front panel should be set to MAN/EXT. Specific information is provided in paragraph 3-74.

(5) ~ LINE VOLTAGE SELECTOR Switch:

This switch selects the appropriate ac operating voltage. Selectable voltages are $100V/120V\pm10\%$ and $220V\pm10\%/240V+5\%-10\%$ (48 - 66Hz).

6) ~ LINE FUSE Holder:

Instrument's power-line fuse is installed in this holder.

100V/120V operation:

1AT, 250V

(HP P/N: 2110-0007)

220V/240V operation:

750mAT, 250V

(HP P/N: 2110-0360)

(7) ∿LINE Input Receptacle:

AC power cord connects to this receptacle.

8 COMPARATOR/HANDLER INTERFACE Connector:

Thirty-six pin connector, Option 002 instruments only, connects the 16064A COMPARATOR/HANDLER INTERFACE to the instrument.

(9) HP-IB Control Switch:

This switch sets the instrument's HP-IB address (0 - 30), data output format (F1 - F6), and interface capability (Addressable or Talk Only). Specific information on this switch is given in paragraph 3-86.

(10) HP-IB Connector:

Twenty-four pin connector; connects the instrument to an HP-IB controller or other HP-IB instruments via an HP-IB cable.

Figure 3-2. Rear Panel Features (Sheet 2 of 2).

Note

If an LED lamp or 7-segment display fails to light during the Display test, contact the nearest Hewlett-Packard Sales or Service Office for repairs.

Note

If the instrument is equipped with Comparator/Handler Option 002, Interface, and if the 16064A Comparator/Handler Interface is connected to the instrument, all 16064A LED lamps except D/Q/ESR/G and LIMIT LOW lamps will be lit during the Display test.

3-11. ANALOG CIRCUIT TEST

3-12. The Analog Circuit test is performed when the instrument's self-test function is initiated from the front panel or via the HP-IB. It is performed after the Display test, described in paragraph 3-9, and it confirms correct operation of the instruments analog circuits. Like the Display test, this test is repeated until the self-test function is turned off. The test lasts approximately three seconds. If a malfunction is detected, an error-code will be displayed on DISPLAY A. Refer to Table 3-4.

Note

The Analog Circuit test must be performed with an open-terminated (no DUT) test fixture (e.g., 16047A) connected to the UNKNOWN terminals.

Note

If one or more of the error codes listed in Table 3-4 appear on DISPLAY A during the Analog Circuit test, contact the nearest Hewlett-Packard Sales or Service Office for repairs.

3-13. MEASUREMENT FUNCTIONS

3-14. Values displayed on DISPLAY A and DISPLAY B are for the parameters selected by the DISPLAY A and DISPLAY B function keys. Inductance (L), capacitance (C), or impedance magnitude (|Z|) values are displayed on DISPLAY A; dissipation factor (D), quality factor (Q), equivalent series resistance (ESR), conductance (G), or impedance phase (θ) values are displayed on DISPLAY B. The DISPLAY B measurement function depends on the selected DISPLAY A function and the selected CKT MODE, as listed in Table 3-1. When DISPLAY A

function is HIGH SPEED C or HIGH SPEED L, DISPLAY B is always blank.

Table 3-1. Measurement Functions

	DISPLAY B		
	Circuit Mode		
DISPLAY A		₽	
L	D, Q, or ESR	D, Q, or G	
С	D, Q, or ESR	D, Q, or G	
HIGH SPEED L			
HIGH SPEED C			
Z	θ	θ	

3-15. DISPLAYS

3-16. The 4277A has three front panel displays: DISPLAY A, DISPLAY B, and FREQUENCY/DC BIAS. Each is described in paragraphs 3-17 through 3-19, respectively.

3-17. DISPLAY A provides direct readout of measured C, L, or | Z |, with 4 1/2-digit display resolution. The actual number of display digits depends on measurement range, test frequency, and test signal level. The least significant digit may be displayed as a small zero, ☐, or may be blank, ☐, to indicate that the digit does not provide a specified value. Maximum number of counts is ±19999. DISPLAY A also displays error-codes, operational annunciations, and the HP-IB address or output data format.

3-18. DISPLAY B provides direct readout of measured D, Q, ESR, G, or θ , with 4 1/2-digit display resolution. The actual number of display digits depends on measurement range, test frequency, test signal level, and number of DISPLAY A counts. The least significant digit may be displayed as a small zero, 📙 , or may be blank, \blacksquare , to indicate that the $\overline{\text{dig}}$ it does not provide a specified value. Maximum number of display counts depends on the DISPLAY B function. Refer to Table 3-2. DISPLAY B also displays error-codes, operational annunciations, and option annunciation 16064 when the instrument is equipped with Option 002. When the DISPLAY A function is HIGH SPEED C or HIGH SPEED L, DISPLAY B is blank.

Note

Option annunciation 16064 appears only when the 16064A Comparator is connected to the rear panel.

Table 3-2. Number of Counts on DISPLAY B

Measurement Function	Display Counts	
D	Max. 1.9999	
Q	Мах. 10 о о о	
ESR/G	- 19999 to 19999 counts	
θ	- 180.00° to 180.00°	

3-19. The FREQUENCY/DC BIAS display provides direct readout of test frequency and, if the instrument is equipped with Option 001, the voltage output from the internal dc bias source. If Option 001 is installed, option annunciation 001 is displayed on this display each time the instrument is turned on. If the DC BIAS ON/OFF switch is set to OFF when the dc bias voltage is changed, OFF will be briefly displayed on this displayed after the new value has been set. Refer to paragraph 3-24. Also, if the instrument is equipped with Option 002, BIN numbers are displayed on this display when the 16064A Comparator is enabled.

3-20. ERROR-CODES

3-21. Error-codes related to the ROM/RAM test (see paragraph 3-7) are listed in Table 3-3. If one of these errors is displayed on DISPLAY A when the instrument is turned on, measurements can not be made.

Note

If E68 is displayed, measurements can be. The instrument's continuous memory function, however, is disabled.

3-22. Error-codes related to the Analog Circuit test (see paragraph 3-11) are listed in Table 3-4. If one or more of these errors are displayed on DISPLAY A during Self Test, the specifications listed in Table 1-1 are not guaranteed.

Note

If one of the error-codes listed in Table 3-3 or Table 3-4 is displayed, contact the nearest Hewlett-Packard Sales or Service Office for repairs.

3-23. Error-codes related to operator errors are listed in Table 3-6. Corrective action for each error is also given in the table.

3-24. OPERATIONAL ANNUNCIATION

3-25. On instruments equipped with Option 001, DC BIAS, the annunciation shown in Table 3-5 may briefly appear on the FREQUENCY/DC BIAS display after a new dc bias voltage has been set. It indicates that the DC BIAS ON/OFF switch on the front panel is set to OFF. This switch must be set to ON if voltage from the internal dc bias source is to be applied to the DUT.

Note

For applications using the internal de bias source, the DC BIAS select switch on the rear panel must be set to INT.

Table 3-3. Error-Codes for ROM/RAM Self Test

Error Code	Meaning
EE	AlU5 ROM is faulty.
E E E	AlU6 ROM is faulty.
EBB	AlU7 ROM is faulty.
District A	AlU8 ROM is faulty.
888	AlU9 ROM is faulty.
F E E	AlU10 ROM is faulty.
E E	A1U12 RAM is faulty.
EBB	AlU12 RAM or A6BT1 is faulty.

Table 3-4. Error-Codes for Analog Circuit Self Test

Display	Meaning
<u> </u>	Analog Circuit is not functioning properly.

Table 3-5. Operation Error Codes Displayed on FREQUENCY/DC BIAS Display

DISPLAY A	DISPLAY B	FREQ/DC BIAS	Meanings	Treatment
(any reading)	(any reading)	PREQUENCY / DC BASE LIN O O O O O O O	Illegal INTERNAL DC BIAS operation (Option 001). The internal dc bias voltage was set manually or via the HP-IB when the DC BIAS ON/OFF switch on the front panel was set to OFF.	Set the DC BIAS switch to ON. Note Make sure that the DC BIAS switch on the rear panel is set to INT.

SECTION III

Table 3-6. Operation Error Codes Displayed on DISPLAY A/B (Sheet 1 of 3)

ERROR CODE	Meaning	Treatment
OISPLAY A DISPLAY & DISPLA	Overflow - The inductance, capacitance, or impedance of the DUT is too high to be measured on the selected LC Z RANGE.	Select a higher LC Z RANGE.
(any reading)	Overflow - The dissipation factor, quality factor, ESR, or conductance of the DUT is too high.	Change the DISPLAY B function, or change the DISPLAY A function to Z .
OISPLAY A DOISPLAY & D	Underflow -The inductance, capacitance, or impedance of the DUT is too low to be measured on the selected LC Z RANGE.	Select a lower LC Z RANGE.
(any reading)	Underflow -The dissipation factor, quality factor, ESR, or conductance of the DUT is too low.	Change the DISPLAY B function, or change the DISPLAY A function to Z .
DISPLAY A DISPLAY B DISP	Change Function -The selected parameter cannot	Change the DISPLAY A function to another parameter.
(any reading)	be measured with the present control settings.	Change the DISPLAY B function, or change the DISPLAY A function to Z .
OISPLAY A OISPLAY B OISPLA	Zero Offset Adjustment error. The residuals of the test fixture or test leads are too high to be offset, or nothing is connected to the UNKNOWN terminals. Previous Zero Offset data are unchanged.	Use a different test fixture or test leads; or, if nothing is connected to the UNKNOWN terminals, connect an appropriate test fixture or test leads. Refer to paragraph 3-50 for details on Zero Offset Adjustments.

Table 3-6. Operation Error Codes Displayed on DISPLAY A/B (Sheet 2 of 3)

ERROR CODE	Meaning	Treatment
DISPLAY A DISPLAY & DISPLA	Illegal LC Z RANGE, DISPLAY A, FREQ, or TEST SIG LEVEL setting.	The instrument will automatically select the correct setting.
E / B of the control	Illegal DC BIAS or COMPARATOR operation. Internal dc bias voltage was set via the HP-IB, but the instrument is not equipped with Option 001; or the comparator enable code (E1) was sent via the HP-IB; but the instrument is not equipped with Option 002.	Install the desired option. Refer to Section II.
OISPLAY A O O O O O O O O O O O O	Illegal COMPARATOR operation. The D/Q/ESR/G key on the 16064A was pressed or was set via the HP-IB while the DISPLAY A function was set to HIGH SPEED C, HIGH SPEED L, or Z .	D, Q, ESR, or G comparison cannot be performed. The instrument is set to HIGH SPEED L or HIGH SPEED C measurement mode.
DIBPLAY A O O O O O O O O O O O O O O	Illegal COMPARATOR operation. One of the 4277A's front panel keys (except TRIGGER, LOCAL, or DC BIAS) was pressed or was set via the HP-IB.	To change a front panel control setting on the 4277A, first disable (turn off) the 16064A. Press the COMPARATOR ENABLE key (the lamp at the center of the key should go off).
	Illegal COMPARATOR operation. One of the 16064A's keys (except the COMPARATOR ENABLE key) was pressed or was set via HP-IB while the 16064A was disabled.	To operate the COMPARATOR, first enable (turn on) the 16064A. Press the COMPARATOR ENABLE key (the lamp at the center of the key should come on).

Table 3-6. Operation Error Codes Displayed on DISPLAY A/B (Sheet 3 of 3)

ERROR CODE	Meaning	Treatment
E / E O O O O O O O O O O O O O O O O O	Illegal COMPARATOR operation. The 4277A's front panel control settings are different from those that existed when the present bin limits were entered.	Reset the front panel controls to the previous settings, or clear the stored bin limits by pressing the ERASE button.
018PLAY A	Illegal COMPARATOR operation. The RUN key on the 16064A was pressed or was set via HP-IB when no bin limits were entered, or a bin's LOW LIMIT is higher than its HIGH LIMIT.	Enter LOW and HIGH limits, or correct the displayed LOW and HIGH LIMITs.
DISPLAY A OISPLAY OF CONTROL OF C	Illegal parameter setting. The test frequency setting, internal dc bias setting, or a bin limit setting is out- side the specified limits.	Reset the incorrect parameter.
DISPLAY A DISPLAY B O O O O O O O O O O O O	Illegal HP-IB address. The HP-IB address switches on the rear panel were set to 31 (11111) when the instrument was turned on.	Turn off the instrument and set the HP-IB address to one between 0 (00000) and 30 (11110).
DIBPLAY A DIBPLAY B DIBPLA	Illegal deviation measurement operation. The ∆ key on the front panel was pressed or was set via HP-IB when □F , □F , or F was displayed on DISPLAY A or DISPLAY B.	Only valid reference values can be used for deviation measurement.

3-26. TEST FREQUENCY

3-27. There are six test frequency ranges, as listed in Table 3-7. Frequency accuracy is 0.01% of the value displayed on the FREQUENCY/DC BIAS display.

Table 3-7. Test Frequency Ranges and Resolution

	,		
Test Frequency Range	Resolution		
10.0kHz - 20.0kHz	100Hz		
20.0kHz - 50.0kHz	200Hz		
50.0kHz - 100kHz	500Hz		
100kHz - 200kHz	1kHz		
200kHz - 500kHz	2kHz		
500kHz - 1.00MHz	5kHz		

3-28. TEST SIGNAL LEVEL

3-29. The 4277A has two test signal levels: HIGH (1Vrms) and LOW (20mVrms). Accuracy for each level is listed in Table 3-8. The output impedance of the test signal source is $100\Omega\pm10\%$, so the voltage across the DUT depends on the DUT's impedance. Refer to Figure 3-3.

Table 3-8. Test Signal Level Accuracy

Freq.	1MHz	Other Frequencies
HIGH	±10%	±10%
LOW	±10%	±15%

3-30. MEASUREMENT RANGE

3-31. Measurement range depends on the test frequency. The ranges which can be selected at each test frequency and the range resistor used on each range are shown in Figure 3-5. Each range allows a 100% overrange of the 10000 full scale counts (maximum 19999 counts). Figure 3-4 shows the number of display digits for each measurement functions. Measurement range is selected by the LC | Z | RANGE keys. When the LC | Z | RANGE control is set to AUTO, the optimum range is automatically selected for each measurement. Manual ranging is also When an inappropriate range is possible. selected, OF or UF is displayed on DISPLAY A or DISPLAY B.

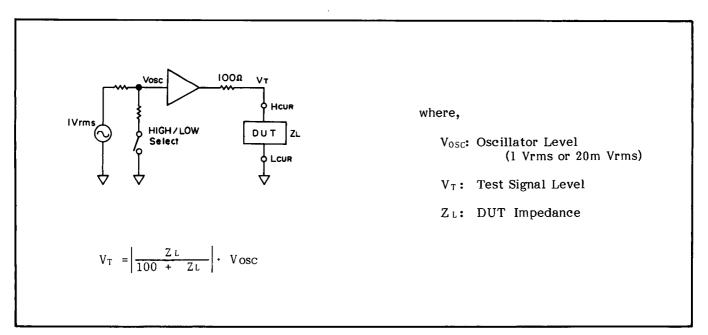
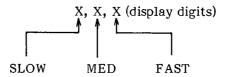



Figure 3-3. Equivalent Circuit of the Test Signal Source.

NUMBER OF DISPLAY DIGITS

Tables 1 through 12 show the number of significant digits displayed for each of the 4277 A's measurement parameters. The three-number combinations given in the tables indicate the number of display digits for the respective measurement range and test frequency for each measurement speed. For example, if MED measurement speed is selected, use the middle number; if FAST is selected, use the right most number.

The number of display digits is defined as follows:

4 digits	0000	to	19999
3 digits	000	to	1999
2 digits	886	to	1886
1 digits	Oee	to	1900

A full-scale factor is used in Figure A through Figure N. It is defined as follows:

Full-scale factor = (measured value : full-scale value) of C, L, or | Z |

For example, when the measured C value is 9.5nF on the 10nF range, full-scale factor is 0.95.

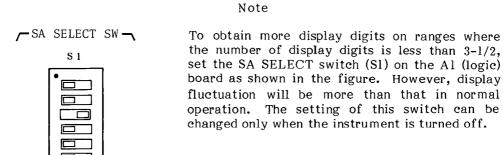


Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 1 of 16).

NUMBER OF DISPLAY DIGITS FOR CAPACITANCE

1 Test Signal Level: HIGH

Capacitance	Test Frequency (Hz)				
Range	10.0k to 20.0k	.0k to 20.0k 20.2k to 200k			
10µF	See Figure B				
lμF	See Figure A	See Figure B			
100nF		See Figure A	See Figure B		
10nF		See Figure A			
1nF	4.4.3				
100pF					
10pF					
1pF					

Note: Shaded areas indicate that measurement cannot be performed.

2 Test Signal Level: LOW

Capacitance Range	Test Frequency (Hz)								
	10.0k	10.1k to 18.0k	18.1k to 19.9k	20.0k	20.2k to 99.5k	100k	101k to 200k	202k to 995k	1.00M
10μF	See Figure B								
1μF	See Figure A			See Figure B					
100nF						e F <u>i</u> gur	e A	See Figure B	
10nF	4.4.3 4.3.3	.4.3 4.3.3 3.3.3	4 · 3 · 3 3 · 3 · 3	.3.3		See Figure A		ure A	
1nF					.3.3	4 • 4 • 3		L	
100pF	3.3.2	3.2.2]		4.3.3		4 • 4 • 3	
10pF					3.2.2	3 • 3 • 2	3.2.2		
lpF					-		_	3.2.2	3 • 3 • 2

Note: Shaded areas indicate that measurement cannot be performed.

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 2 of 16).

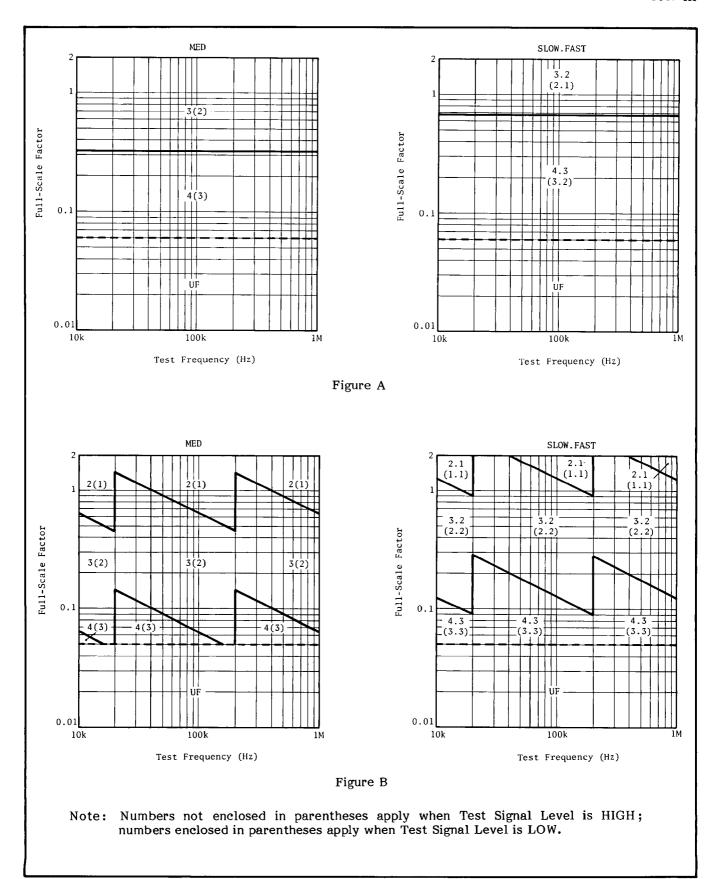
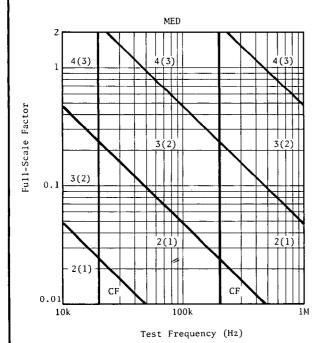
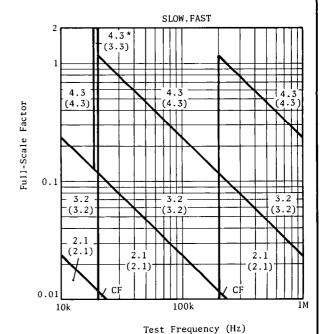


Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 3 of 16).

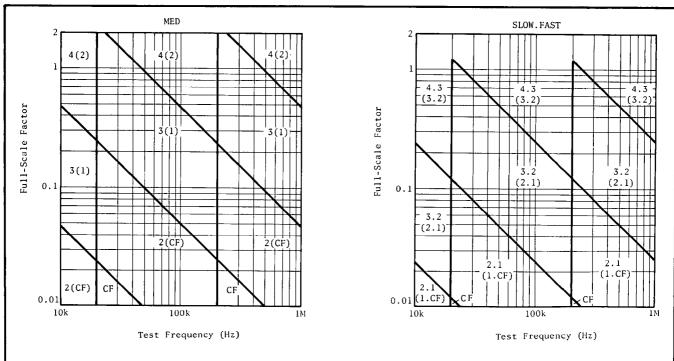

NUMBER OF DISPLAY DIGITS FOR DISSIPATION FACTOR IN C-D MEASUREMENT


3

Capacitance	Test Frequency (Hz)			
Range	10.0k to 20.0k	20.2k to 200k	202k to 1.00M	
10μF	See Figure E			
1μF	3.3.2 (2.2.2)*	See Figure E		
100nF		3.3.2 (2.2.2)*	See Figure E	
10nF			3.3.2 (2.2.2)*	
1nF]	See Figure C		
100pF	See Figure D			
10pF		See Figure D		
1pF			See Figure D	

Note: 1) Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

- 2) Shaded areas indicate that measurement cannot be performed.
- 3) *When the measured C value is less than 5% of full scale, D measurement cannot be performed.



Note: 1) Add one digit at 10k, 100k, and 1MHz when Test Signal Level is LOW.

- 2) *Frequency range is 18.1kHz to 19.9kHz.
- 3) Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

Figure C

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 4 of 16).

Note: Add one digit at 10k, 100k, and 1MHz when Test Signal Level is LOW.

Figure D

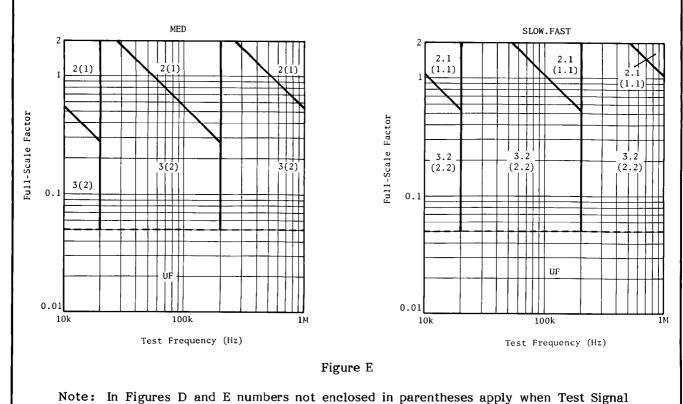


Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 5 of 16).

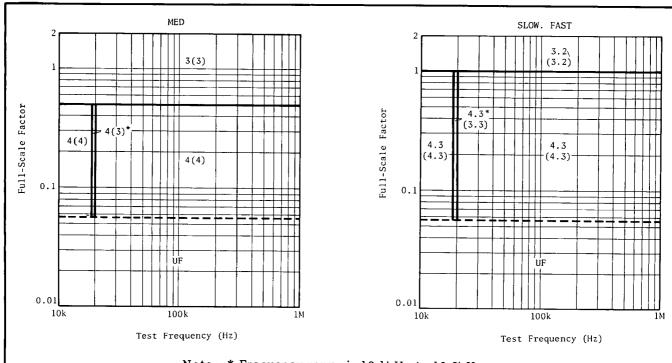
LOW.

Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is

NUMBER OF DISPLAY DIGITS FOR INDUCTANCE

4 Test Signal Level: HIGH

		Test Frequency (Hz)					
Inductance Range	10.0k	10.1k to 20.0k	202.k to 99.5k	100k	101k to 200k	202k to 995k	1.00M
1H	See						
100mH	Figure G ₁	See Figure G ₂		See			
10mH	See Figure F	Figure G ₁		See Fig	ure G ₂	See Figure G ₁	
1mH	4.4.3	See Figure F					
100μΗ				_		See Figure F	7
10μΗ		4.3.3 4.4		•3	4.7.7		. 7
1μH					4.3.3	4.4	• 5


Note: Shaded areas indicate that measurement cannot be performed.

5 Test Signal Level: LOW

			Test Frequency (H				
Inductance Range	10.0k	10.1k to 20.0k	20.2k to 99.5k	100k	101k to 200k	202k to 995k	1.00M
1H	See						
100mH	Figure G ₁	See Figure G ₂		See			
10mH	See Figure F	2		Figure G ₁	See Fig	ure G ₂	See Figure G ₁
1mH	4.4.3	S	See Figure F				
100μΗ	3.3.2	3.3.3 4.3.3 4.4.3		S	See Figure F	3	
10µH		2 • 2 • 2	3 • 2 • 2	3.3.2	3 • 3 • 3	4 • 3 • 3	4 • 4 • 3
1μH					2 • 2 • 2	3 • 2 • 2	3.3.2

Note: Shaded areas indicate that measurement cannot be performed.

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 6 of 16).

Note: * Frequency range is 18.1kHz to 19.9kHz.

Figure F

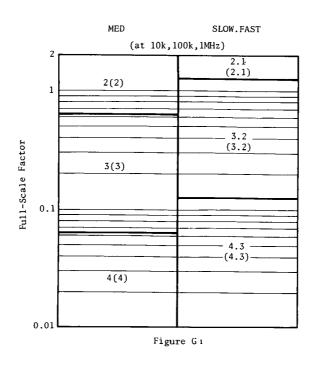
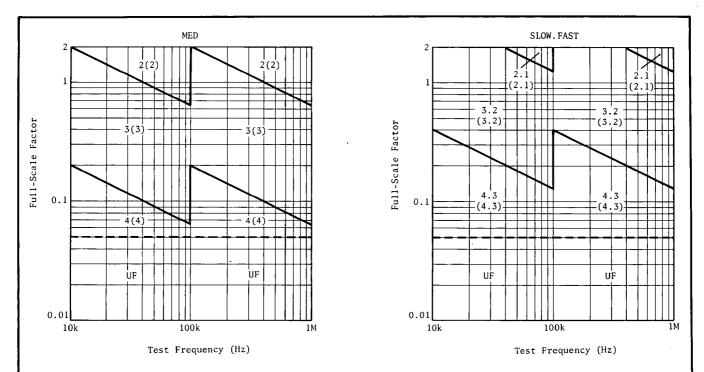



Figure G₁

Note: In Figures F and G₁ numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 7 of 16).

Note: Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

Figure G₂

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 8 of 16).

6

NUMBER OF DISPLAY DIGITS FOR DISSIPATION FACTOR IN L-D MEASUREMENT

Inductance		Test	Frequency (Hz))	
Range	10.0k	10.1k to 99.5k	100k	101k to 995k	1.00M
1H				_	
100mH		See Figu	re J		
10mH	3.3.2 (3.3.2)*				
1mH	See Figure H ₁	3.3.2 (3.	3 • 2) *		
100μΗ	See Figure I ₁	See Figure H ₂ See Figure H ₁		3.3.2 (3.	3.2)*
10μΗ		See Figure I ₂	See Figure I ₁	See Figure H ₂	See Figure H
1μΗ				See Figure I ₂	See Figure I

Note: 1) Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

- 2) Shaded areas indicate that measurement cannot be performed.
- 3) *When the measured L value is less than 5.6% of full scale, D measurement cannot be performed.

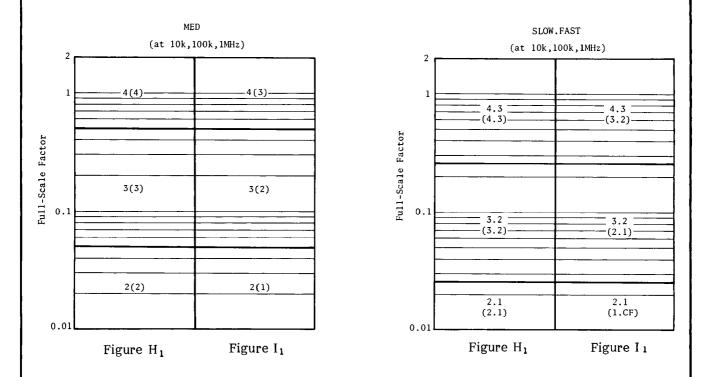


Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 9 of 16).

Note: Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

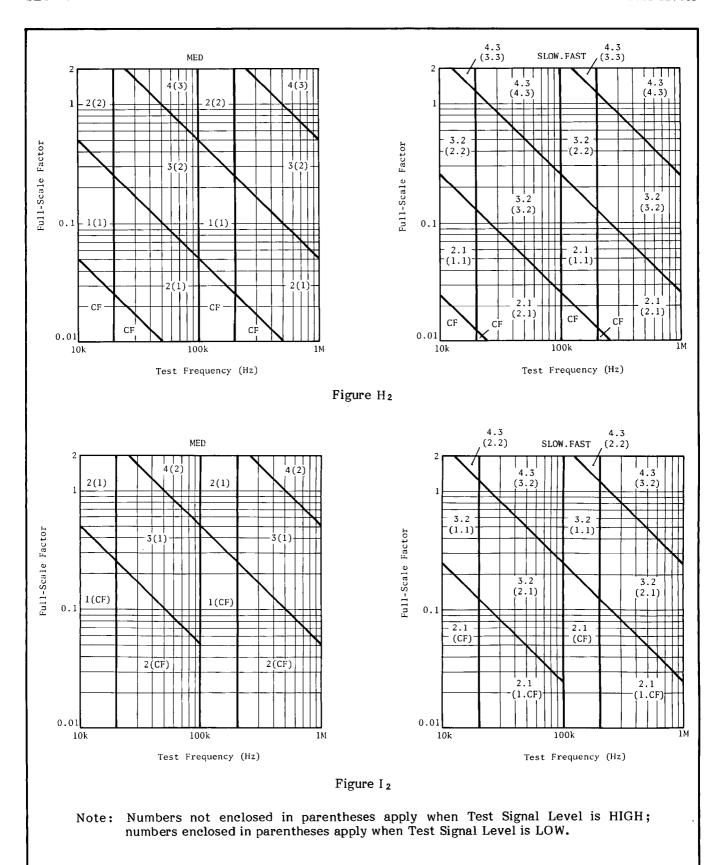
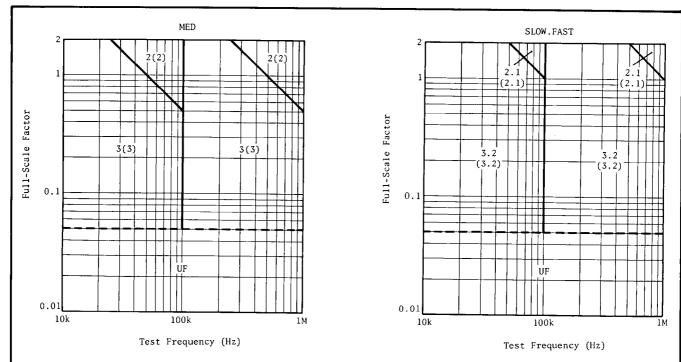



Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 10 of 16).

Note: Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

Figure J

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 11 of 16).

NUMBER OF DISPLAY DIGITS FOR ESR AND G IN C-ESR/G MEASUREMENT

7

ESR/G	Test Frequency (Hz)				
Range	10.0k to 18.0k	18.1k to 19.9k	20.0k to 1.00M		
1MΩ/10μS	4.4.3 (3.3.2)				
100kΩ/100μS					
10kΩ/1mS	4.4.3 (4.4.3)	4 • 4 • 3 (3 • 3 • 3)	4.4.3 (4.4.3)		
$1 k\Omega/10 mS$					
$100\Omega/100 \text{mS}$	3.3.2 (3.3.2)				
10Ω/1S			_		

Note: 1) ESR and G ranges depend on the selected C range.

2) Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

NUMBER OF DISPLAY DIGITS FOR ESR AND G IN L-ESR/G MEASUREMENT

8

ESR/G	Test Frequency (Hz)			
Range	10.0k to 18.0k	18.1k to 19.9k	20.0k to 1.00M	
100kΩ/100μS				
10kΩ/1mS		3.3.2 (3.3.2)		
1kΩ/10mS				
100Ω/100mS	4.4.3 (4.4.3)	4.4.3 (3.3.3)	4.4.3 (4.4.3)	
10Ω/1S		4.4.3 (3.3.2)		

Note: 1) ESR and G ranges depend on the selected L range.

2) Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 12 of 16).

DISPLAY INDICATION FOR QUALITY FACTOR

9 D: 4 digits

D	Q	Display
.0001 to .0009	10000 to 1111	BF
.0010 to .0033	1000 to 303	1800. to 300.
.0034 to .0099	294 to 101	28a. to 18a.
.0100 to .0333	100 to 30	188, to 38,
.0334 to 1.9999	29.9 to 0.5	29,9 to .5

Note: Q is the reciprocal of D.

10 D: 3 digits

D	Q	Display
.001 to .003	1000 to 333	Q F
.004 to .010	250 to 100	300. to 100.
.011 to .033	90.9 to 30.3	80. to 80.
.034 to 1.999	29.4 to 0.5	30. to 1.

Note: Q is the reciprocal of D.

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 13 of 16).

NUMBER OF DISPLAY DIGITS FOR IMPEDANCE

11

Z Range		Test Frequency (Hz)				
Z Kungo	10.0k to 18.0k	10.0k to 18.0k 18.1k to 19.9k 20.0k to 99.5k 100k to 1.00				
1ΜΩ	See Figure L					
100kΩ						
10kΩ	See Figure K					
1kΩ						
100Ω	4.4.3 (4.3.3) 4.4.3 (3.3.3) 4.4.3 (4.3.3) 4.4.3 (4.4.3					
10Ω	4.4.3 (3.3.2)					

Note: Numbers not enclosed in parentheses apply when Test Signal Level is HIGH; numbers enclosed in parentheses apply when Test Signal Level is LOW.

NUMBER OF DISPLAY DIGITS FOR PHASE ANGLE

12

Z Range	Test Frequency (Hz)
1 1 1.0	10.0k to 1.00M
1ΜΩ	See Figure L
100kΩ	
10kΩ	See Figure K
1kΩ	
100Ω	See Figure M
10Ω	See Figure N

Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 14 of 16).

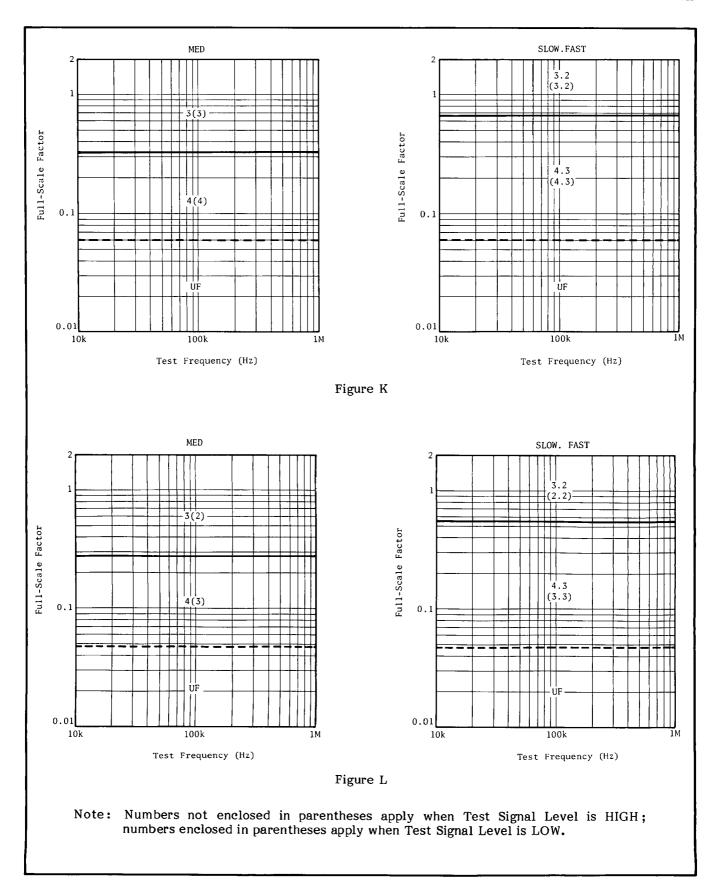


Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 15 of 16).

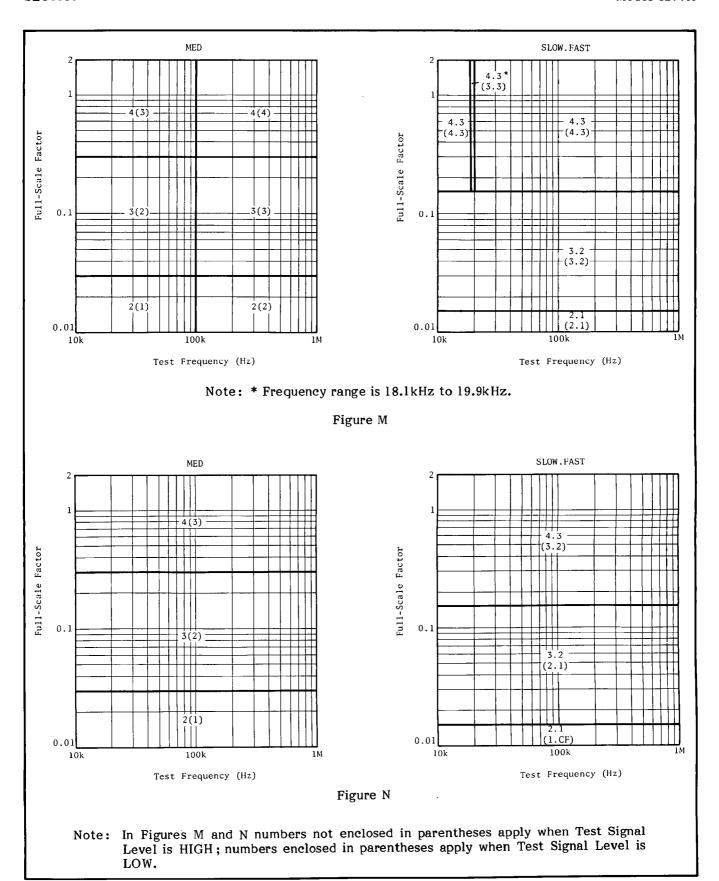


Figure 3-4. Measurement Ranges and Number of Display Digits (Sheet 16 of 16).

C-D Measurement

C-ESR/G Measurement

ESR/G	Test Frequency (Hz)
Range	10.0k to 1.00M
1MΩ/10μS	10kΩ
100kΩ/100μS	10K%
10kΩ/lmS	1kΩ
$1 k\Omega / 10 mS$	
100Ω/100mS	100Ω
10Ω/1S	

L-D Measurement

L Range	Test Frequency (Hz)				
Z Mange	10.0k	10.1k to 100k 101k to 1.00M			
1Н					
100mH]	1kΩ			
1 OmH					
1mH	100Ω				
100μΗ		1000			
10µH	•				
lμH					

L-ESR/G Measurement

ESR/G	Test Frequency (Hz)	
Range	10.0k to 1.00M	
100kΩ/100μS	1kΩ	
10kΩ/1mS		
1kΩ/10mS	100Ω	
100Ω/100mS	100%	
10Ω/1S		

| Z | -θ Measurement

	· semi-tense	
Z Range	Test Frequency (Hz)	
	10.0k to 1.00M	
1ΜΩ	10kΩ	
100kΩ	10828	
10kΩ	$\overline{1 \mathrm{k} \Omega}$	
1kΩ		
100Ω	100Ω	
10Ω		

Figure 3-5. Measurement Ranges and Range Resistors.

Note

When a C-D measurement is made with the instrument controls set as follows, the number of display counts depends on frequency, as shown in Figure 3-6.

As an example, suppose you're measuring a 180pF capacitor on the 100pF range at 17kHz, and the measured value is 175.62pF. If the test frequency is increased to 19kHz, OF will be displayed on DISPLAY A because the maximum number of counts at this higher frequency is only 17000, as shown in Figure 3-6.

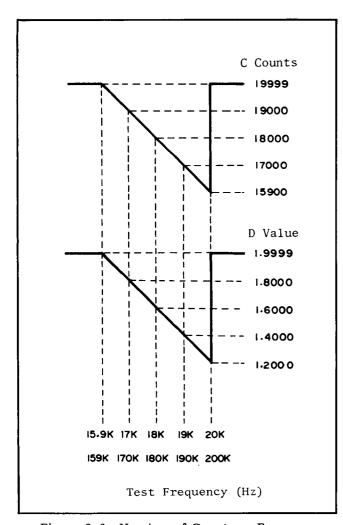


Figure 3-6. Number of Counts vs Frequency.

3-32. CIRCUIT MODE

3-33. An impedance can be represented by a simple series or parallel equivalent circuit consisting of resistive and reactive elements. This is possible because both equivalent circuits have identical impedances at a given test frequency by properly establishing the values of the equivalent circuit elements. The equivalent circuit measurement mode is selected by setting the CIRCUIT MODE control. When the CIRCUIT MODE is set to AUTO, the 4277A will automatically select the circuit mode most appropriate for the range and function settings. Equivalent series circuit mode is automatically selected when the measurement range is 100Ω or Equivalent parallel circuit mode is automatically selected when the measurement range is $1k\Omega$ or above. By setting CIRCUIT MODE manually, either circuit mode can be selected, regardless all measurement ranges.

3-34. Capacitance and inductance measurements can be performed in either equivalent series circuit mode or equivalent parallel circuit mode. However, measured values obtained in each mode are different. The difference in measured values is related to the loss factor of the sample being measured. The impedance of a sample measured in both series and parallel circuit mode is the same at a particular frequency. Therefore, the following equations are satisfied:

$$jX R jB$$

$$G$$

$$G$$

$$Z = R + jX Y = \frac{1}{Z} = G + jB$$

$$G + jB = \frac{1}{R + jX}$$

$$= \frac{R}{R^2 + X^2} - j \frac{X}{R^2 + X^2}$$

Model 4277A SECTION III

Expanding the above equation, we have

$$G + j\omega Cp = \frac{R}{R^2 + \frac{1}{\omega^2 Cs^2}} + j \frac{\frac{1}{\omega Cs}}{R^2 + \frac{1}{\omega^2 Cs^2}}$$

where, Cs (= - $\frac{1}{\omega X}$) : equivalent series circuit capacitance

Cp (= $\frac{B}{\omega}$) : equivalent parallel circuit capacitance

Obviously, if no series resistance (R) or parallel conductance (G) are present, the equivalent series circuit capacitance (Cs) and equivalent parallel circuit capacitance (Cp) are identical. Likewise, if R and G are not present, the equivalent series circuit inductance (Ls) and equivalent parallel circuit inductance (Lp) are identical.

However, a sample value measured in a parallel measurement circuit can be correlated with that of a series circuit by a simple conversion formula which considers the effect of dissipation factor. See Table 3-9. Figure 3-7 graphically shows the relationships of parallel and series parameters for various dissipation factor values. Applicable diagrams and equations are given in the chart. For example, a parallel capacitance (Cp) of 1000pF with a dissipation factor of 0.5 is equivalent to a series capacitance (Cs) of 1250pF with an identical dissipation factor. As shown in Figure 3-7, inductance or capacitance values for parallel and series equivalents are nearly equal when the dissipation factor is less than 0.03. The dissipation factor of a component always has the same value at a given frequency for both parallel and series equivalents.

In ordinary LCR measuring instruments, the measurement circuit is set (automatically or manually) to a predetermined equivalent circuit with respect to either the selected range or to the dissipation factor value of the sample. The wider circuit mode selection capability of the 4277A, which is free from these restrictions. permits taking measurements in the desired circuit mode and of comparing such measured values directly with those obtained by another instrument. This obviates the inconvenience and necessity of employing instruments capable of taking measurements with the same equivalent circuit measurement to assure correspondence.

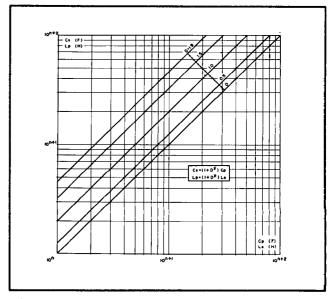


Figure 3-7. Parallel and Series Parameter Relationship.

Table 3-9. Dissipation Factor Equations and Equivalent Circuit Conversion Formulas

Circuit Mode		Dissipation Factor	Conversion to Other Modes
C	₽	$D = \frac{G}{\omega Cp} = \frac{1}{Q}$	Cs = $(1 + D^2)$ Cp, $R = \frac{D^2}{1 + D^2} \cdot \frac{1}{G}$
Cs R •□-₩•	$D = \omega C s R = \frac{1}{Q}$	$Cp = \frac{1}{1 + D^2} Cs, G = \frac{D^2}{1 + D^2} \cdot \frac{1}{R}$	
1	L₽ G G	$D = \omega LpG = \frac{1}{Q}$	Ls = $\frac{1}{1 + D^2}$ Lp, R = $\frac{D^2}{1 + D^2}$ · $\frac{1}{G}$
L	Ls Ř • □ W •	$D = \frac{R}{\omega Ls} = \frac{1}{Q}$	Lp = $(1 + D^2)$ Ls, $G = \frac{D^2}{1 + D^2} \cdot \frac{1}{R}$

3-35. INITIAL DISPLAY AND INDICATIONS

3-36. Each time the instrument is turned on, the option codes for installed options and the HP-IB address are displayed on the front panel for approximately two seconds. The HP-IB address is displayed on DISPLAY A, as shown below. The factory set address is 17 (10001), but any address from 0 (00000) to 30 (11110) can be set. Refer to the HP-IB discussion starting in paragraph 3-76.

Note

If the instrument is set to TALK ONLY mode, the output data format number (see paragraph 3-90) will appear on DISPLAY A instead of the HP-IB address.

The following option code is displayed on DISPLAY B if the instrument is equipped with Option 002, Comparator/Handler Interface.

Note

The above option code will not be displayed if the 16064A Comparator/Handler Interface is not connected to the instrument.

The following option code is displayed on the FREQUENCY/DC BIAS display if the instrument is equipped with Option 001, Internal DC Bias.

3-37. After the HP-IB address and option codes have been displayed, the continuous memory function automatically recalls the front panel control settings that existed when the instrument was turned off.

Note

Output from the internal dc bias source (option 001 instruments) is automatically set to 0V at instrument power on as a safety precaution.

3-38. INITIAL CONTROL SETTINGS

3-39. The 4277A is automatically set to the control settings listed below when the continuous memory function (refer to paragraph 3-40) is reset as described in paragraph 3-43.

DISPLAY A FunctionC
DISPLAY B FunctionG
CIRCUIT MODE AUTO
LC Z RANGE ······ AUTO
MEASUREMENT SPEED MED
TEST SIGNAL LEVEL··············· HIGH
TRIGGER ·····INT
SELF TEST ····· OFF
Δ OFF
FREQ/DC BIASFREQ
SPOT/COARSE/FINE ····· SPOT
Frequency ·························1.00kHz
OPEN ZERO DATA·················0Ω
SHORT ZERO DATA ··································

When the instrument is equipped Option 001:

When the instrument is equipped Option 002, control settings of the 16064A Comparator are as follows:

ENABLEOFF
LC Z //D/Q/ESR/G L/C/ Z
LIMIT LOW/HIGHLOW
BIN NUMBER1
RUNOFF
BIN LIMITSblank

3-40. CONTINUOUS MEMORY

3-41. The continuous memory function of the 4277A automatically memorizes all front panel control settings when the instrument is turned off or experiences a power failure. When the instrument is turned on, the memorized settings are automatically recalled. Continuous memory powered rechargeable is by а lasts nickel-cadmium battery that approximately 2 weeks when the instrument is turned off. The battery is recharged while the 4277A is turned on.

Note

the 4277A When turned on, automatically performs a Check Sum Test as part of its turn-on Self Test. The Check Sum Test checks the contents of memory. If incorrect, E68 will be displayed on DISPLAY A and memory will be cleared. The instrument will be set to the initial control settings (refer to paragraph

3-42. OPEN and SHORT Zero Offset values (refer to paragraph 3-51) and reference values for deviation measurements (refer to paragraph 3-60) are also memorized by the continuous memory function. On instruments equipped with the Comparator/Handler Interface option (Option 002), all high and low limits and all 16064A control settings (except RUN) are memorized. DC bias voltage (Option 001) settings, however, are not memorized.

3-43. RESETTING CONTINUOUS MEMORY

3-44. To reset, or clear, continuous memory, proceed as follows:

- (1) Turn off the 4277A.
- (2) Press and hold both FREQ/DC BIAS Step Control Keys (② ②).
- (3) Turn on the 4277A.

3-45. UNKNOWN TERMINALS

3-46. Generally, the mutual inductance between test leads, noise from nearby equipment, and the residuals and strays of conventional connection methods significantly affect the accuracy of impedance measurements made at high frequencies. To minimize these error sources and thereby ensure optimum measurement accuracy, the 4277A employs a four-terminal pair connection method. The UNKNOWN BNC terminals consist of four female H CUR (high current), H POT (high connectors: potential), L_{POT} (low potential), and L_{CUR} (low current). The current terminals (H_{CUR} and L_{CUR}) provide the test signal current, and the potential terminals (H POT and LPOT) detect the voltage across the DUT (device under test). To connect a sample, the four-terminal pair configuration converted two-terminal be to a configuration. This is done by connecting the outer conductors of the terminals to each other and then H CUR to HPOT and LCUR to LPOT, as shown in Figure 3-8. The principle of the four-terminal pair measurement is illustrated in Figure 3-9.

At first glance, the arrangement appears to be an expanded four terminal method with a built-in guard structure. This is true. Thus, the pair method combines four-terminal advantages of the four terminal method in low impedance measurements while providing the high impedance required for shielding measurements. The distinctive feature of the four-terminal pair configuration is that the outer shield works as the return path for the test signal current. The same current flows through both the center conductors and the outer shield conductors (in opposite directions), yet no external magnetic fields are generated around the conductors (the magnetic fields produced by the currents through the inner and outer conductors completely cancel each other). Because the measurement signal current does not develop an inductive magnetic field, the test leads do not contribute additional measurement errors due to mutual-inductance between the individual leads. Hence, the four-terminal pair method provides best measurement accuracy minimizing the effects of capacitance and residual inductance inherent in the test leads or test fixture.

Note

Because test leads have residual inductance, the resultant additional measurement error increases in capacitance measurements in proportion to the square of the test frequency.

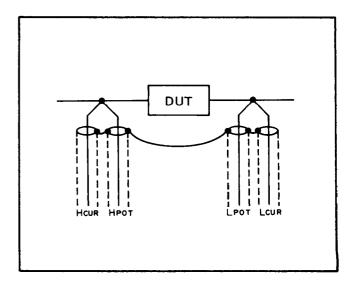


Figure 3-8. Four Terminal Pair DUT Connections.

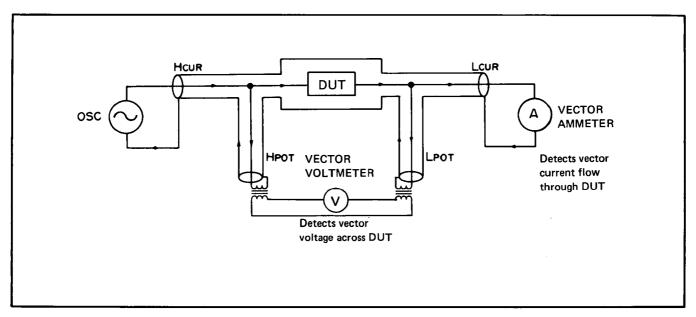


Figure 3-9. Four Terminal Pair Measurement Principle.

3-47. MEASUREMENT OF GROUNDED SAMPLES

3-48. Samples which have one terminal (except GROUND terminal) grounded to earth cannot normally be measured by the 4277A. Such measurement conditions are, for example, the distributed capacitance measurement of a coaxial cable with a grounded shield conductor or the input/output impedance measurement of a ended amplifier. one-side-grounded sample is connected for measurement. the 4277A may display measurement error message incorrect or measurement results. This is because the bridge section cannot achieve a balance with any grounded terminal measurement additionally, any grounding modifies the four terminal pair measurement architecture (other than an internal connection of the shield conductor to instrument chassis at one point).

Note

If one terminal is grounded, a signal current of equal magnitude (an operating condition of the four terminal pair configuration measurement) will not flow in the inner and outer conductors of the measurement cable.

3-49. SELECTION OF TEST CABLE LENGTH

3-50. The propagation signal in a transmission line will develop a change in phase between two points on the line as illustrated in Figure 3-10. The difference in phase corresponds to the ratio of the distance between the two points to the wavelength of the propagating Consequently, owing to their length, test cables used to connect a sample to the UNKNOWN terminals will cause a phase shift and a propagation loss of the test signal. For example, the wavelength of a lMHz test signal is 300 meters which is 300 times as long as the 1m standard test cables. Here, the phase of the test signal at the end of the test cable will be shifted by about 1.2 degrees (360° ÷ 300) in reference to the phase at the other end of the cable. Since the effect of test cables on measurements and the resultant measurement error increase in proportion to the test frequency, cable length must be taken into consideration when making high frequency measurements. The CABLE LENGTH switch must be selected so as to provide the correct phase compensation for measurements made with the 1m standard test cables or for a test fixture attached directly to the UNKNOWN terminals. When standard test cables (1m or 2m) are used, the CABLE LENGTH switch must be set to the 1m position to minimize additional measurement errors. The 0 position is for direct attachment type test fixtures.

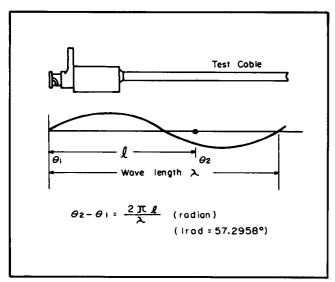


Figure 3-10. Test Signal Phase on Test Cables.

Note

When the HP 16065A, EXT Voltage Bias Fixture, is used with the 4277A, set the CABLE LENGTH switch to the 1m position.

Note

When the HP 16048D Test Leads (standard 2m test cable) is used with the 4277A, the CABLE LENGTH switch must be set to the 1m position and the SA SELECT switch (S1) on the A1 (Logic) board must be set as shown in Figure 3-11. The setting of this switch can be changed only when the instrument is turned off.

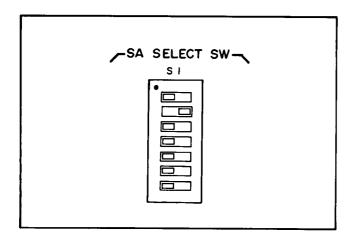


Figure 3-11. SA SELECT Switch Settings for 2m Test Leads.

Note

If test leads longer or shorter than the standard 1m or 2m test leads are used, the additional error is proportional to the square of the frequency. As the characteristic impedance of the test leads is also a factor in the propagation loss and phase shift (and of resultant measurement error), use of different type test leads must be avoided. Use only the standard test leads available from Hewlett-Packard.

3-51. ZERO OFFSET ADJUSTMENT

3-52. The test fixtures and test leads used to connect samples to the instrument's UNKNOWN terminals have inherent residual impedance and stray admittance which, unless compensated for in some way, affect measurement accuracy. To minimize the effects of these residuals and strays, the 4277A is equipped with OPEN and SHORT Zero Offset Adjustment functions that can be executed from the front panel or via the HP-IB. Each Zero Offset Adjustment is performed at the following frequencies:

1MHz 900kHz 700kHz 505kHz 202kHz 100kHz 50.5Hz 20.2Hz 10kHz

Zero Offset data for test frequencies other than those listed above are calculated from the Zero Offset data obtained at the above test frequencies by using second degree interpolation. Thus, Zero Offset is provided for measurements made at all test frequencies. Brief descriptions of the Zero Offset Adjustments (OPEN and SHORT) are given below.

ZERO OPEN:

The procedure for performing OPEN Zero Offset Adjustment is as follows:

(1) Connect the test fixture or test leads to the instrument's UNKNOWN terminals.

Note

If test leads are used, you must convert the four-terminal pair configuration to a two-terminal configuration. Refer to paragraph 3-45 and Figure 3-8.

- (2) Connect nothing as the DUT.
- (3) Press the ZERO OPEN button.

When the ZERO OPEN button is pressed, the instrument will be automatically set to C-G measurement mode. It will then measure the test fixture's stray admittance at each of the previously mentioned test frequencies. The measured values are stored in the instrument's internal memory. When offset adjustment is completed, DISPLAY A and DISPLAY B will be blank for 1 or 2 seconds, after which the front panel controls will be reset to the settings that existed when the ZERO OPEN button was pressed.

The purpose of OPEN Zero Offset Adjustment is to measure the test fixture's stray admittance, which, as shown in Figure 3-12 (a), consists of G_0 and G_0 . (This stray admittance is equivalent to a high impedance, which will "swamp out" a high impedance DUT connected to the test fixture.) The residual impedance of the test fixture— R_0 and L_0 in Figure 3-12 (a)—is negligibly low and therefore does not affect the accuracy of OPEN Zero Offset Adjustments.

ZERO SHORT:

The procedure for performing SHORT Zero Offset Adjustment is as follows:

(1) Connect the test fixture or test leads to the instrument's UNKNOWN terminals.

Note

If test leads are used, you must convert the four-terminal configuration to a two-terminal configuration. Refer to paragraph 3-45 and Figure 3-8.

- (2) Connect a low impedance shorting-bar to the test fixture. If you're using test leads, simply connect the ends of the leads together.
- (3) Press the ZERO SHORT button.

When the ZERO SHORT button is pressed, the instrument will be automatically set to L-ESR measurement mode. It will then measure the test fixture's residual impedance at each of the previously mentioned test frequencies. The measured values are stored in the instrument's internal memory. When offset adjustment is completed, DISPLAY A and DISPLAY B will be blank for 1 or 2 seconds, after which the front panel controls will be reset to the settings that existed when the ZERO SHORT button was pressed. The purpose of SHORT Zero Offset

Adjustment is to measure the test fixture's (or test lead's) residual impedance, which, as shown in Figure 3-12 (b), consists of R $_{0}$ and L $_{0}$. This residual impedance, although small, degrades the accuracy of low impedance measurements. The stray admittance of the test fixture—G $_{0}$ and C $_{0}$ in Figure 3-12 (b)— is shunted by the low impedance shorting-bar and therefore is not measured.

OPEN and SHORT Zero Offset Adjustments have been made, the instrument automatically compensates all subsequent measurements for the residuals and strays of the test fixture or test leads. The values displayed on the front panel are the actual values of the DUT. Also, because the Zero Offset data is maintained by the instrument's continuous memory function, OPEN and SHORT Zero Offset Adjustments do not have to be repeated each time the instrument is turned on. You need to repeat Zero Offset Adjustments only when you change test fixtures (the residuals and strays of one test fixture are different from those of another). Maximum values that can be offset are listed below.

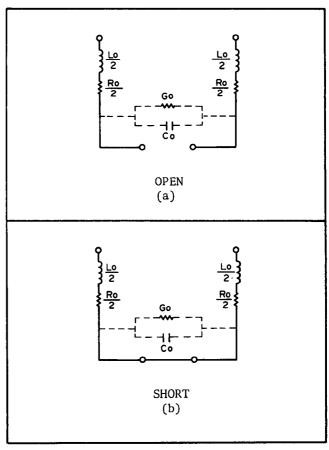


Figure 3-12. Equivalent Circuits for Zero Offset Adjustment.

Capacitance: Up to 20pF **OPEN** Conductance: Up to 2 uS

Up to 2µH Inductance: SHORT Up to 2Ω

Resistance:

Note

During Zero Offset Adjustment, OF or CF may appear on DISPLAY A or DISPLAY B. Zero Offset Adjustment, however, is performed correctly unless error code "E10" is displayed.

Note

After Zero Offset Adjustments, CF and 0000 may be alternately displayed on DISPLAY A if the measurement mode is other than C-G and nothing is connected to the test fixture. This is normal; it is not a malfunction.

Note

OPEN SHORT Zero and Offset Adjustments cannot be performed without a test fixture.

3-53. ACTUAL MEASUREMENT EQUIVALENT CIRCUIT

3-54. The test fixture or test leads used to connect a sample to the instrument's UNKNOWN terminals becomes part of the sample which the instrument measures. The four-terminal pair configuration employed in the 4277A minimizes residual impedance circuit. The residual impedance, inherent in the test fixture or test leads, can be eliminated by the 4277 A's ZERO offset function (refer paragraph 3-51).

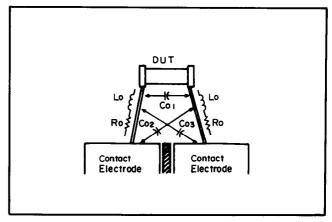


Figure 3-13. Parasitic Impedances Incident to DUT Connections.

However, the four-terminal pair measurement system must be converted to a two terminal configuration at the sample because most components have only two terminals. Moreover, additional stray capacitance is introduced when the sample is connected to the test fixture. Figure 3-13 illustrates lead impedance and the stray capacitances between the component's leads.

3-55. Diverse parasitic elements between the sample and the UNKNOWN terminals will affect measurement results. These parasitic elements are series resistive and reactive elements and parallel conductive and susceptive elements. Figure 3-14 shows the equivalent circuit of the samples parasitic elements (R + jX is the sample's impedance). In 3-14, Lo represents the residual inductance of the component's leads, and Ro is lead resistance. Go is the conductance between the leads, and Co is the sum of all stray capacitances shown in Figure 3-13. Reactive factors in the residual impedance and susceptive factors in the stray admittance have a greater effect on measurements made at higher frequencies.

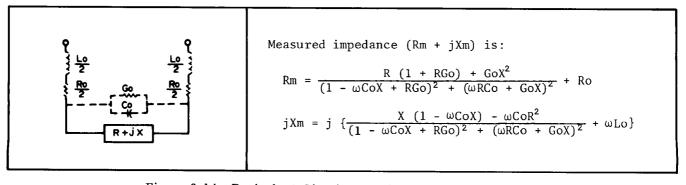


Figure 3-14. Equivalent Circuit Including Residual Impedance.

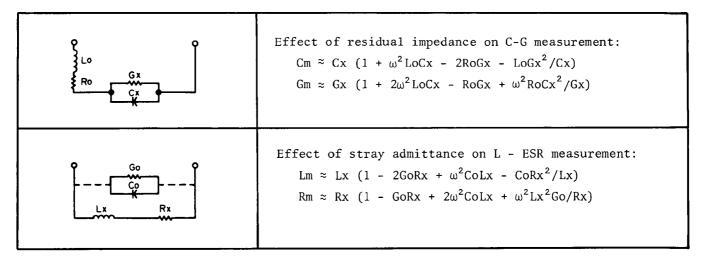


Figure 3-15. Effects of Residual Impedance.

3-56. Figure 3-15 shows the effect of residual impedance on C-G measurement and the effect of stray admittance on L-R measurement. Generally, Lo resonates with the capacitance of the sample (series resonance) and Co resonates with the inductance of the sample (parallel resonance), respectively, at a specific high frequency. Thus, the impedance of the test sample will have a minimum value corresponding to resonant peaks, as shown in Figure 3-16. The presence of Lo and Co causes measurement errors, as the phase of the test signal current varies over a broad frequency region around the resonant frequencies. Additional errors, due to the resonance, increase in proportion to the square of the measurement frequency (below resonant frequency) and can be theoretically approximated as follows:

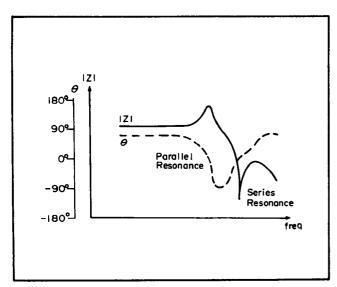


Figure 3-16. Effect of Resonance in Sample (Example).

C ERROR
$$\approx \omega^2 L_0 Cx \cdot 100 (\%)$$

L ERROR $\approx \omega^2 C_0 Lx \cdot 100 (\%)$

where,

 ω = $2\pi f$ (f:test frequency) Cx = Capacitance value of sample Lx = Inductance value of sample

At low frequencies, $L_{\,0}$ and $C_{\,0}$ affect measured inductance and capacitance values, respectively, as simple additive errors. These measurement errors cannot be fully eliminated by the ZERO offset adjustment (which compensates for residual factors inherent in the test fixture). This is because $L_{\,0}$ and $C_{\,0}$ are peculiar to the component being measured. Their values depend on component lead length and on the distance between the sample and test fixture. The measurement results, then, are substantially the sample values including the parasitic impedances present under the conditions necessary to connect and hold the sample.

3-57. MEASURED VALUES AND BEHAVIOR OF COMPONENTS

3-58. A component's measured value and its nominal value can, and often do, differ considerably because of various electromagnetic effects; for example, skin-effect of a conductor, the ferromagnetic properties of inductors, and the effects of dielectric materials in capacitors. Here, we'll discuss only the effects which result from the interaction of the reactive elements (L, C, etc.) of a component.

3-59. The impedance of a component can be graphically represented in vector form as shown in Figure 3-17. In such representation, the effective resistance and effective reactance correspond to the projections of the impedance vector $|Z|\ell\theta$; that is, the real (R) axis and the imaginary (jX) axis, respectively, as shown below:

Re = |Z|
$$\cos \theta$$

Xe = |Z| $\sin \theta$
D = $\frac{\cos \theta}{\sin \theta}$ = $\frac{1}{\tan \theta}$

where, Re: Effective resistance

Xe: Effective reactance

Z: Impedance of the sample (Re + jXe).

D: Dissipation factor

When the phase angle, θ , changes, both Re and Xe change in accordance with the definitions above. As component measurement parameters L, C, R, D, etc., are also representations of components related to the impedance vector, the phase angle dominates their values. Consider, for example, the inductance and the loss of an inductive component at frequencies around its self-resonant frequency. Figure 3-18 shows the equivalent circuit of the inductor. inductance, Lx, resonates with the distributed capacitance Co at frequency fo. The phase angle (θ) of the impedance vector approaches 0 degrees (the vector approaches the R axis) when the frequency is close to the resonant frequency. Thus, the inductance of this component decreases while the resistive factor (loss) increases. At the resonant frequency, fo, this component is purely resistive. The effective resistance increases at resonance even if the inductor has no resistance (ideal inductor) at dc. Consequently, the loss factor varies sharply at frequencies around the resonant point.

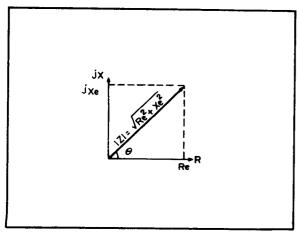


Figure 3-17. Impedance Vector Representation.

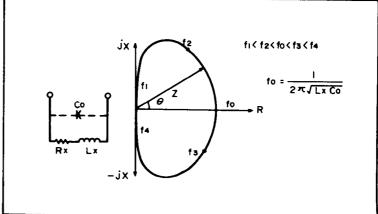


Figure 3-18. Typical Impedance Locus of an Inductor.

3-60. DEVIATION MEASUREMENT FUNCTION

3-61. When many components of similar value are to be tested, it may be more practical to measure the difference between the value of the component and a predetermined, or ideal, reference value than measuring the DUT value itself. When the purpose of the measurement is to observe the change of a component's value versus changes in temperature, frequency, bias, etc., a direct measurement of this change (deviation) makes examination more meaningful and easier.

When the Δ key is pressed, the values 3-62. (measurement results) displayed on DISPLAY A and DISPLAY B are stored in the instrument's memory and are then used as the reference values for all subsequent measurements. The value displayed on each display is not the sample's measured value, it is the difference between the stored reference value and the measured value. Stored reference values are maintained by the 4277 A's continuous memory function when the instrument is turned off. The deviation measurement function is automatically turned off when the DISPLAY A function, DISPLAY B function, LC | Z | RANGE, or CKT MODE is changed. It may be turned off also if the test frequency is changed when the DISPLAY B function is ESR/G, because the measurement range for ESR and G is frequency dependent.

3-63. CHARACTERISTICS OF TEST FIXTURES

3-64. Characteristics and applicable measurement ranges of the HP test fixtures and test leads for the 4277A are summarized in Table 3-10. To facilitate measurement and to minimize measurement errors, a test fixture appropriate for the measurement should be chosen from among HP's standard accessories. Select the test fixture or leads that have the desired performance characteristics.

Table 3-10. Typical Characteristics of Test Fixtures and Leads

Applicable Measuremen		ment Ranges Reading Error at 1MHz		it 1MHz
Model	Parameter Value	Measurement Frequency	Parameter Reading Error	D Offset Value
16047A	Full range	Full range	±0.05%	±0.0002
16047C	Full range	Full range	±0.01%	±0.0001
16048A 16048B	Full range	Full range	±0.05%	±0.0005
16048C	C>1000pF L>100µH	Below 100kHz	Residual Parameter Values: C<5pF, L<200nH, R<10mΩ	
16048D	Full range	Full range	±0.20%	±0.0020
			±0.05%	±0.0005
	Ranges satisfied Z >50Ω	Full range	Residual Parameter Val C<0.02pF,	lues: L<30nH, R<50mΩ
16065A	Full range	50Hz to 2MHz		

3-65. MEASUREMENT ACCURACY

3-66. The measurement reference plane for the accuracies specified in Section I is the UNKNOWN terminals. The measurement accuracy of the 4277A is guaranteed at the UNKNOWN terminals. The conditions under which accuracy is specified are described in Table 1-1. An example of the how to calculate measurement accuracy is shown in Figure 3-19.

3-67. GENERAL COMPONENT MEASUREMENT

3-68. The procedures for measuring general components-inductors, capacitors, resistors-are given in Figure 3-20. Almost any discrete component, except for those having special shapes or dimensions, can be measured with this setup. Special components may be measured by using test leads 16048A, 16048B, 16034B, etc., or by using specially designed user-built fixtures instead of the 16047A Test Fixture.

3-69. SEMICONDUCTOR DEVICE MEASUREMENT

3-70. As an example of a typical semiconductor measurement, the procedures for measuring the base-collector junction capacitance (C ob) of an NPN transistor are given in Figure 3-21.

[Examples of Calculating D, and Q Measurement Accuracies]

Front Panel Settings:

Test Frequency: 1MHz LC | Z | RANGE: 100pF TEST SIG LEVEL: HIGH MEAS SPEED: MED

Measured Values:

C: 148.97pF D: .0005

Q: OF (Assume a value of Qm)

Accuracies (Refer to Table 1-1):

C: ±.1% of reading + 5 counts $148.97pF \times (.1/100) + .05pF$

 $= (\pm) 0.199pF$

D: $\pm .3\%$ of reading $+ .0005/\alpha + .0006 + 5$

 $.0005 \times (.3/100) + .0005/1.4897 + .0006$ +.0005

 $= (\pm).00144$

 $Q_M \times (.00144/.0005) + .1$ Q:

 $= \pm (Q_M \times 2.88 + .1)$

Note

In this case, Q accuracy (2.88 times Q) has no meaning, because Q is overflow (OF).

[Examples of Calculating and ESR/G Measurement Accuracies]

Front Panel Settings:

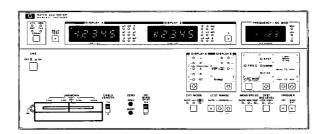
Test Frequency: 10kHz LC | Z | RANGE: 1uF TEST SIG LEVEL: HIGH MEAS SPEED: MED

Measured Values:

C: .905 uF ESR: $.3\Omega$ G: 1.5 mS

Accuracies:

C: $(.3 + .5\alpha)\%$ of reading + 3 counts $.905 \mu F \times (.3 + .5 \times .905)/100 + .003$ $= (\pm) 0.0180 \mu F$


ESR: .2% of reading + $30\alpha m\Omega + 20m\Omega +$ 5 counts

 $.3\Omega \times .2/100 + 30 \times .905 \text{m}\Omega + 20 \text{m}\Omega$

 $+.5\Omega$ $= (\pm) 550 \text{m}\Omega$

G: $1mS \times (550/300)$ $= (\pm) 1.83 \text{mS}$

Figure 3-19. How to Calculate Measurement Accuracies.

- 1. Connect the 16047A Test Fixture to the UNKNOWN terminals.
- 2. Turn on the 4277A.
- 3. Verify that the HP-IB address and option codes (16064 and 001) are displayed on DISPLAY A, DISPLAY B, and the FREQUENCY/DC BIAS display, respectively.

Note

Option codes are displayed only if the corresponding option is installed.

Note

The HP-IB address is set to 17 (10001) when the instrument is shipped from the factory.

- 4. Press the SELF TEST key to verify that the instrument is functioning properly. Refer to paragraph 3-5, SELF TEST. If no error-codes are displayed, press the SELF TEST key again to turn off the SELF TEST function.
- Select the measurement functions for DISPLAY A and DISPLAY B.
- Set the test frequency, test signal level, and measurement speed.

Note

SLOW measurement speed minimizes display fluctuation.

Note

Best measurement accuracy is obtained when test signal level is set to HIGH and measurement speed is set to MED.

- 7. Perform OPEN and SHORT Zero Offset adjustments as described in paragraph 3-51.
- Connect the device to be measured to the test fixture.
- Read the measured values from DISPLAY A and DISPLAY B.

Note

Refer to paragraph 3-20 for the meaning of any error-codes that may appear on DISPLAY A.

Note

When the instrument is set to C-D or C-Q measurement mode and nothing is connected to the measurement terminals, CF and .0000 may be alternately displayed on DISPLAY A. This is not a malfunction, however.

Note

For C or L measurement, if the dissipation factor of the DUT is higher than 0.1, C, L, and D measurement accuracy tolerances increase by a factor of $1+D^2$. If D is higher than 1, AUTO ranging cannot be performed correctly. |Z| measurement mode should be selected.

Parameters of semiconductor devices have a strong dependency on the applied voltage and device temperature. Because of the non-linear impedance chanracteristics of semiconductor devices, a semiconductor measurement is subject to exact establishment of the test conditions to make measured values meaningful. For a detailed analysis of the device under its

operating test conditions, a low level test signal is employed in order to obtain measured values with respect to a local region around the operating test point selected for plotting characteristic parameter curves of the sample. A typical procedure for measuring semiconductor junction capacitance in P-N and MOS junction devices is outlined below.

Measurement Setup:

The figure above shows a typical test setup for measuring the base-collector junction capacitance (Cob) of an NPN transistor. For this measurement, the test fixture may be user designed. A 4277A equipped with option 001 is ideal for controlling the dc bias required for the measurement. If dc bias is not necessary, setup and procedures associated with this measurement may be deleted.

PROCEDURE:

- 1. Connect the test fixture or test cables to the UNKNOWN terminals of the 4277A.
- 2. Turn on the 4277A.
- Set the 4277A's front panel controls as follows:

DISPLAY A: C
DISPLAY B: G
Test Freq.: 1 MHz
TEST SIG LEVEL: LOW

4. Perform OPEN and SHORT Zero Offset adjustments as described in paragraph 3-51.

5. Set the DC BIAS SELECT switch on the rear panel to INT.

Note

If an external voltage source is used for dc biasing, set the DC BIAS SELECT switch to EXT, and connect the voltage source output to the EXT INPUT/INT MONITOR connector on the rear panel.

Note

DC bias voltage, whether supplied from the internal bias source or from an external bias source, should be set to 0V at this time.

Note

Use the HP Model 16065A EXTERNAL VOLTAGE BIAS FIXTURE for high voltage bias applications up to ±200V.

6. Connect the transistor to the measurement terminals.

 Monitor the bias voltage actually applied to the transistor.

Note

If the 16065A is used, close the lid after you connect the transistor to the measurement terminals. Measurement cannot be made while the lid is open.

8. Set the DC BIAS ON/OFF switch on the front panel to ON, and set the desired bias voltage.

Note

If the P-N junction becomes forward biased at either peak of the test signal, correct measurement cannot be made.

9. Read the capacitance value from DISPLAY A.

3-71. EXTERNAL DC BIAS

3-72. The special biasing circuits procedures for using external voltage or current bias (required for certain capacitance or inductance measurements) are given in Figure 3-23. The figures show sample circuits appropriate for 4277A applications. applying a dc voltage to capacitors, be sure the applied voltage does not exceed the maximum specified voltage of the capacitor and that the capacitor is connected with correct polarity. Note that the externally applied bias voltage is present at the $H_{\text{POT}}\,$ and $H_{\text{CUR}}\,$ terminals.

3-73. Bias Voltage Settling Time: When a measurement with dc bias voltage superposed is performed, it takes some time for the voltage across sample to reach a certain percentage of the applied (desired) voltage. Typical values of dc bias voltage settling time are listed in Table 1-2 as reference data.

3-74. EXTERNAL TRIGGERING

3-75. The 4277A can be externally triggered by connecting an external triggering device to the EXT TRIGGER connector on the rear panel and setting the TRIGGER control on the front panel to MAN/EXT on front panel. The instrument is triggered (measurement is made) each time a positive-going TTL level pulse is applied to this connector (refer to Figure 3-22). External triggering can be also done by alternately shorting and opening the center conductor of the EXT TRIGGER connector to ground (chassis).

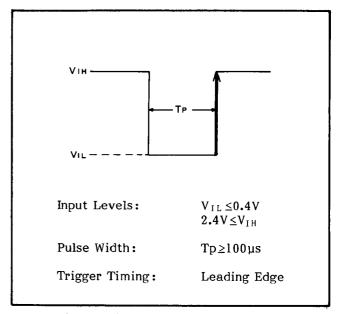
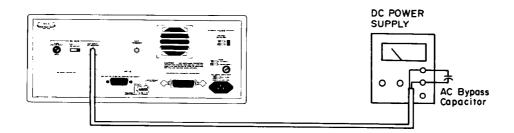



Figure 3-22. External Trigger Pulse.

EXTERNAL DC BIAS OPERATION (≤±40V)

To make capacitance measurements using externally supplied dc bias voltages up tp ±40V, connect a dc voltage source to EXT INPUT/INT MONITOR connector on the rear panel as shown in the diagram.

CAUTION

DO NOT APPLY GREATER THAN ±40V TO THE 4277A'S EXT INPUT/INT MONITOR CONNECTOR. IF THE APPLIED VOLTAGE EXCEEDS ±40V, THE 4277A MAY BE DAMAGED.

CAUTION

BE SURE THE CORRECT FUSE (HP P/N 2110-0011) IS INSTALLED IN THE DC BIAS FUSE HOLDER ON THE REAR PANEL.

PROCEDURE:

- Set DC BIAS select switch on rear panel to EXT.
- 2. Connect the test fixture or test leads to the UNKNOWN terminals of the 4277A.
- 3. Turn on the instruments.
- 4. Set the 4277A's controls as described in steps 5 through 7 of Figure 3-20. Set the DISPLAY A function to "C" measurement mode.
- 5. Perform OPEN and SHORT Zero Offset Adjustments as described in paragraph 3-51.
- 6. Connect a sample to the test fixture or test leads.

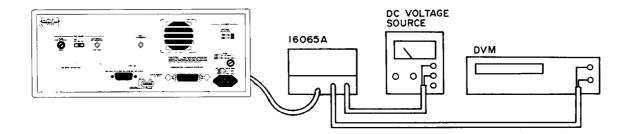
CAUTION

DO NOT SHORT THE HIGH AND LOW TERMINALS.

CAUTION

WHEN A POSITIVE BIAS VOLTAGE IS USED, THE POSITIVE TERMINAL OF ELECTROLYTIC CAPACITORS MUST CONNECTED TO INSTRUMENT'S HIGH TERMINAL. WHEN USING A NEGATIVE BIAS VOLTAGE, CONNECT CAPACITOR'S NEGATIVE TERMINAL THE INSTRUMENT'S HIGH TERMINAL.

- 7. Set the external dc voltage source to the desired output voltage.
- Read the measured values. Wait until the applied dc bias across the sample becomes stable.
- 9. Reset the external voltage source to 0V.
- Remove the sample from test fixture or test leads.


Note

Use a stable dc voltage source.

Note

To make stable measurements, connect an ac bypass capacitor (approximately $l\,\mu F$) between positive terminal and negative terminal of the external dc voltage source.

EXTERNAL DC BIAS OPERATION (<±200V)

To make capacitance measurements using externally supplied dc bias voltages up to ±200V, use the HP 16065A Test Fixture. Connect a dc voltage source to the 16065A as shown in the diagram.

CAUTION

DO NOT APPLY GREATER THAN ±40V TO THE 4277A'S EXT INPUT/INT MONITOR CONNECTOR. IF THE APPLIED VOLTAGE EXCEEDS ±40V, THE 4277A MAY BE DAMAGED.

PROCEDURE:

- Set DC BIAS select switch on rear panel to OFF.
- 2. Set CABLE LENGTH switch on the front panel to 1m.
- 3. Connect the 16065A to the UNKNOWN terminals of the 4277A.
- 4. Connect the dc voltage source to DC BIAS INPUT connector of the 16065A.
- 5. Connect a DVM or an oscilloscope to the DC BIAS MONITOR connector of the 16065A.
- 6. Turn on the instruments.
- 7. Set the 4277A's controls as described in steps 5 through 7 of Figure 3-20. Set the DISPLAY A function to "C" measurement mode.
- 8. Perform OPEN and SHORT Zero Offset Adjustments.

9. Connect a sample to the 16065A test fixture.

CAUTION

DO NOT SHORT THE HIGH AND LOW TERMINALS.

CAUTION

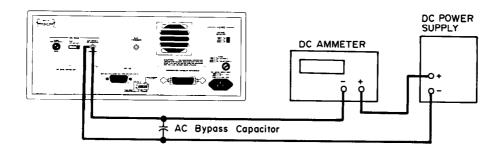
WHEN A POSITIVE BIAS VOLTAGE IS USED, THE POSITIVE TERMINAL OF ELECTROLYTIC CAPACITORS MUST CONNECTED TO THE INSTRUMENT'S HIGH TERMINAL. WHEN USING A NEGATIVE BIAS CONNECT THE VOLTAGE, CAPACITOR'S NEGATIVE TERMINAL INSTRUMENT'S HIGH TO THE TERMINAL.

- 10. Set the external dc voltage source to the desired output voltage and close the cover of the 16065A.
- 11. Read the measured values. Wait until the monitored voltage becomes stable.
- 12. Open the cover of the 16065A.

Note

When the cover of the 16065A is opened, the charge on the sample is discharged through two paralleled 20Ω resistors.

13. Remove the sample from the 16065A.


Note

Use a stable dc voltage source.

Note

The test signal will appear at the DC BIAS MONITOR connector. This does not affect measurement results, however.

EXTERNAL DC CURRENT BIAS OPERATION (≤35mA)

DC bias current can be applied to the sample through the UNKNOWN terminals by connecting a dc voltage source to the instrument. The procedure for making inductance measurements using current biasing is given below.

PROCEDURE:

- Set the DC BIAS select switch on the rear panel to EXT.
- 2. Connect an external dc voltage source and a dc ammeter (for current monitoring) to the EXT INPUT/INT MONITOR connector on the rear panel, as shown in the diagram.
- 3. Connect a test fixture or test leads to the UNKNOWN terminals of the 4277A.
- 4. Turn on the instruments.
- 5. Set the 4277A's controls as described in steps 5 through 7 of Figure 3-20. Set the DISPLAY A function to "L" measurement mode.
- 6. Perform OPEN and SHORT Zero Offset Adjustments.

- Connect the sample to the test fixture or test leads.
- Gradually increase the dc voltage source output voltage until the desired bias current, as indicated on the dc ammeter, is obtained.

CAUTION

DO NOT ALLOW THE BIAS CURRENT TO EXCEED 35mA AND DO NOT ALLOW THE OUTPUT VOLTAGE FROM THE EXTERNAL DC VOLTAGE TO EXCEED SOURCE ±40V. IF CURRENT EXCEEDS 35mA OR IF VOLTAGE EXCEEDS ±40V, THE INSTRUMENT MAY BE DAMAGED.

Note

DC bias current flowing through sample can be calculated by the following equation:

$$I_{DC} = \frac{E_{bias}}{Rx + 1} \quad (mA)$$

where E $_{\rm bias}$ is the bias voltage (V) applied to EXT INPUT/INT MONITOR connector and Rx is the dc resistance (k Ω) of the sample.

- 9. Read the measured values.
- 10. Gradually decrease the dc voltage source output voltage until the dc bias current is 0mA, then remove the sample from the test fixture or test leads.

Note

To make stable measurements, connect an ac bypass capacitor (near $1\,\mu F)$ between the positive terminal and the negative terminal of the dc voltage source.

Note

Maximum allowable current depends on the bridge circuit's range resistor, as listed in the table below.

Range Resistor	Maximum Output Current	
100Ω	35mA	
$1 \mathrm{k}\Omega$ and $10 \mathrm{k}\Omega$	10mA	

Refer to Figure 3-5 for details on the relation between range resistor and measurement range. Note that measurement accuracies, as specified in Section I, are not guaranteed if bias current is allowed to exceed the limits given in the above table.

3-76. HP-IB INTERFACE

3-77. The 4277A can be remotely controlled via the HP-IB, a carefully defined instrument interface which simplifies integration of programmable instruments and a calculator or computer into a system.

Note

HP-IB is Hewlett-Packard's implementation of IEEE Std. 488, "Standard Digital Interface for Programmable Instrumentation."

3-78. HP-IB INTERFACE CAPABILITIES

3-79. The 4277A has eight HP-IB interface functions, as listed in Table 3-11.

Table 3-11. HP-IB Interface Capabilities

Code	Interface Function * (HP-IB Capabilities)		
SH1**	Source Handshake		
AH1	Acceptor Handshake		
T5	Talker (basic talker, serial poll, talk only mode, unaddress to talk if addressed to listen)		
L4	Listener (basic listener, unaddress to listen if addressed to talk)		
SR1	Service Request		
RL1	Remote/local (with local lockout)		
DC1	Device Clear		
DT1	Device Trigger		
* Inte	erface functions provide the means		

- * Interface functions provide the means for a device to receive, process, and tansmit messages over the bus.
- ** The numeric suffix of the interface code indicates the limitation of the function, as defined in Appendix C of IEEE Std. 488. 1978.

3-80. CONNECTION TO HP-IB

3-81. The 4277A can be connected into an HP-IB bus configuration with or without a controller (i.e., with or without an HP calculator). In an HP-IB system without a controller, the instrument functions as a "talk only" device (refer to paragraph 3-86).

3-82. HP-IB STATUS INDICATORS

3-83. The HP-IB Status Indicators are four LED lamps located on the front panel. When lit, these lamps show the existing status of the 4277A in the HP-IB system as follows:

SRQ: SRQ signal from the 4277A to the controller is on the HP-IB line. Refer to paragraph 3-104.

LISTEN: The 4277 A is set to listener.

TALK: The 4277A is set to talker.

REMOTE: The 4277A is under remote control.

3-84. LOCAL KEY

3-85. The LOCAL key releases the 4277A from HP-IB remote control and allows measurement conditions to be set from the front-panel. The REMOTE lamp will go off when this key is pressed. LOCAL control is not available when the 4277A is set to "local lockout" status by the controller.

3-86. HP-IB CONTROL SWITCH

3-87. The HP-IB Control Switch, located on the rear panel, has seven bit switches. See Figure 3-24. Each bit switch has two settings: logical 0 (down position) and logical 1 (up position). The left-most bit switch, bit 7, determines whether the instrument will be addressed by the controller in a multidevice system, or will function as a "talk only" device to output measurement data and/or instructions to an external "listener," e.g., printer.

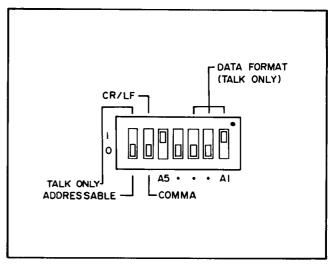


Figure 3-24. HP-IB Control Switch.

When bit switch 7 is set to 0, the instrument is in ADDRESSABLE mode and bit switches 1 through 5 determine the instrument address. When this bit switch is set to 1, however, the instrument is in TALK ONLY mode.

Bit switch 6 determines the output data delimiter. When this bit switch is set to 0, the delimiter is a comma (,); when set to 1, the delimiter is a carriage return and line feed (CR/LF).

Note

The HP-IB Control Switch, as set at the factory, is shown in Figure 3-24.

Note

The HP-IB Control Switch setting is memorized only at instrument turn on. Thus, even if the HP-IB Control Switch setting is changed while the instrument is turned on, the memorized setting is not changed until the instrument is turned off and on.

3-88. ADDRESSABLE MODE

3-89. When bit switch 7 of the HP-IB Control Switch is set to ADDRESSABLE (i.e., set to 0), bit switches 1 through 5 represent the HP-IB address of the instrument, in binary. These switches are set to 10001 (decimal 17) when the instrument leaves the factory but can be set to any desired address between 0 and 30.

Note

When the instrument is turned on, the HP-IB address is displayed, in decimal, on DISPLAY A. For example, the factory-set address (10001) is displayed as "17."

Note

HP-IB address 11111 (decimal 31) cannot be used. If this address is set, E19 will be displayed on DISPLAY A (after 31 has been displayed) when the instrument is turned on.

3-90. TALK ONLY MODE

3-91. When bit switch 7 of the HP-IB Control Switch is set to TALK ONLY (i.e., set to 1), the instrument functions as a "talker," outputting data to a "listener" (e.g., printer). In TALK ONLY mode, bit switches 1, 2, and 3 determine the format in which data is output. There are six formats, F1 through F6, and the bit switch setting for each format is shown in Table 3-12. Refer to paragraph 3-98 for details on the output data formats.

Note

If the instrument is set to TALK ONLY mode, the Output Data Format number will be briefly displayed on DISPLAY A (instead of the HP-IB address) when the instrument is turned on. The displayed number, however, will be the format number plus 50. For example, if the Output Data Format is F3, the number displayed on DISPLAY A at turn on will be 53.

Note

When the instrument is used in TALK ONLY mode, devices connected to the instrument must be set to LISTEN ONLY mode.

Table 3-12. Output Data Formats Selectable in TALK ONLY Mode

Bit Switch Settings			
Bit 3	Bit 2	Bit 1	Output Data Format
0	0	0	F1
0	0	1	F2
0	1	0	F3
0	1	1	F4
1	0	0	F5
1	0	1	F6
1	1	0	F1
1	1	1	F2

Note: Refer to paragraph 3-98 for details.

3-92. REMOTE PROGRAM CODES

3-93. Remoe program codes for the 4277A are listed in Table 3-13.

Table 3-13. Remote Program Codes (Sheet 1 of 2)

Item	Control	Program Code	Description
DISPLAY A Function	L C HIGH SPEED L HIGH SPEED C Z*	A1 A2 A3 A4 A5	DISPLAY A and DISPLAY B combinations are listed in the table below:
DISPLAY B Function	D Q ESR/G	B1 B2 B3	A 1 L-D L-Q L-ESR/G 2 C-D C-Q C-ESR/G * When DISPLAY A is set to Z, DISPLAY B is automatically set to θ.
CKT MODE	AUTO	C1 ° C2 C3	
MEAS SPEED	SLOW MED FAST	M1 M2 * M3	
Auto Range	OFF ON	U0 U1	: Range is fixed.: Range is automatically selected.
LC Z Range	1μΗ/1pF 10μΗ/10pF 100μΗ/100pF/10Ω 1mH/1nF/100Ω 10mH/10nF/1kΩ 100mH/100nF/10kΩ 1H/1μF/100kΩ 10μF/1MΩ	R1 R2 R3 R4 R5 R6 R7	If the instrument is set to a range which cannot make the measurement, range is automatically reset to the nearest range capable of making the measurement.
Test Signal Level	LOW HIGH	V1 V2	
Trigger Mode	INT MAN/EXT	T1 ° T2	This code only sets the trigger mode; it does not trigger the instrument.
Execute		EX	This code is used to trigger the instrument.
Self Test	OFF ON	S0. S1	
Deviation Measurement	OFF ON	X0.	
Zero Offset	OPEN SHORT	Z0 ZS	

Table 3-13. Remote Program Codes (Sheet 2 of 2)

Item	Control	Program Code	Description
Data Ready	OFF ON	DO' D1	If Data Ready is set to ON, an SRQ signal is output when the measurement is completed.
Comparator Enable	OFF ON	E0' E1	If the instrument is not equipped with Option 002, an error will result if El is sent via the HP-IB.
Comparator Run	OFF ON	GO'	
Comparator Limit	L/C/Z input D/Q/ESR/G input	L1' L2	
Comparator Bin Number	BIN1 BIN2 BIN3 BIN4 BIN5 BIN6 BIN7 BIN8 BIN9	N1 ° N2 N3 N4 N5 N6 N7 N8 N9	These codes are used when setting L/C/ Z limits.
Comparator Limit Recall		LR	Refer to paragraph 3-102.
Comparator Limit Erase		ER	Comparator limits stored in all bins are cleared.
Output Data Abort		DA	HP-IB output data are erased from the output buffer.
Output Data Format	Displays A/B or Comparator Displays A/B/Comparator Display A or Comparator Display A/Comparator	F1 · F2 F3 F4	Refer to paragraph 3-98 and Table 3-16.
Learn Mode		LN	Refer to paragraph 3-100.
Output Data Mode	ASCII BINARY	P0° P1	

Note: · indicates an initial control setting (Refer to paragraph 3-38.)

3-94. DATA OUTPUT

3-95. Measurement and status data are output to external devices in bit parallel, byte serial format via the eight DIO signal lines of the HP-IB. Data can be output in ASCII mode or PACKED BINARY mode. Each mode is described below.

[1] ASCII mode

Output data in this mode includes status data, key status (function) data, and measurement data (including range) for DISPLAY A and DISPLAY B. If the instrument is equipped with Option 002, comparison data (LOW, IN, HIGH) for L/C/|Z| and D/Q/ESR/G, and BIN number data can be output, too. The output format is shown in Figure 3-25. All characters are coded in accordance with ASCII coding conventions.

[2] PACKED BINARY mode

Output data in this mode is output as one or two binary bytes, rather than as a character representation. This data output format is for high speed data transfer. Contents of output data, however, is less than that of ASCII mode. Output data in this mode includes status data for DISPLAY A and DISPLAY B, measurement range data as an 8-bit byte, and measurement data of DISPLAY A and DISPLAY B (not including unit and decimal point) as a 16-bit, 2's complement binary word. If the instrument is equipped with Option 002, comparison data (LOW, IN, HIGH) for L/C/|Z| and D/Q/ESR/G, and BIN number data can be output as an 8-bit byte. The displayed data is output as the equivalent decimal values of the resulting words. output format is shown in Figure 3-25.

3-96. PARAMETER SETTING

3-97. Test frequency, DC bias (Option 001), and bin limits (Option 002) can be set via remote programming.

[1] Test Frequency Setting

FR
$$\frac{XXX.X}{(1)}$$
 EN

(1) Setting value, in kHz.

Note

When an illegal frequency that is within the instrument's frequency range is set, the frequency below the illegal setting is automatically selected. For example:

"FR75.9EN": 75.5kHz displayed on FREQUENCY/DC BIAS DISPLAY

[2] DC Bias Setting (Option 001 only)

BI
$$\pm XX.X$$
 EN (1)

(1) Setting value, in volts.

Note

If not set, polarity sign is automatically set to plus (+).

[3] Comparator Limit Setting (Option 002 only)

(Low Limit) LL
$$\frac{XX.XXX}{(1)}$$
 EN (High Limit) LH $\frac{XX.XXX}{(1)}$ EN

(1) Setting value. The position of the decimal point must agree with the measurement range. Unit is in accordance with the unit indicators of DISPLAY A or DISPLAY B.

- [1] ASCII mode (Set using HP-IB remote program code "P0")
- (1) DISPLAY A/B

$$\frac{X}{(1)}\frac{X}{(2)}\frac{X}{(3)}\frac{\pm NN.NNN}{(4)}\frac{E\pm NN}{(5)}\frac{1}{(6)}$$

$$\frac{X}{(7)}\frac{X}{(8)}\frac{\pm N.NNNN}{(9)}\frac{E\pm NN}{(10)}\frac{CR}{(11)}$$

- (1) Measurement circuit mode
- (2) Status of DISPLAY A
- (3) Function of DISPLAY A
- (4) Value of DISPLAY A (position of decimal point is coincident with display)
- (5) Unit of DISPLAY A
- (6) Comma (data delimiter)
- (7) Status of DISPLAY B
- (8) Function of DISPLAY B
- (9) Value of DISPLAY B (position of decimal point is coincident with display)
- (10) Unit of DISPLAY B
- (11) Data Terminator
- (2) COMPARATOR (Option 002 only)

$$\begin{array}{ccc} X & X & N & & & \\ \hline (1) & (2) & (3) & & (4) \end{array}$$

- (1) Status of L/C/ | Z |
- (2) Status of D/Q/ESR/G
- (3) BIN number
- (4) Data Terminator

Note

Status and function data of DISPLAY A and DISPLAY B, and status of Comparator are each represented as one alphabetic character, as listed in Table 3-14.

Note

When measurement error code, OF, UF, CF or blank, is indicated on DISPLAY A or DISPLAY B, value of DISPLAY A or DISPLAY B ((4) or (9)) is output as follows:

OF	(overflow)+ 19999E+20
UF	(underflow)++00000E-20
CF	(change function)/
bl	ank+00000E-30

Note

DISPLAY A and DISPLAY B ranges are expressed as an exponent as follows:

10 ⁻¹² (p)	• E-12
10 ⁻⁹ (n)	
10-6 (u) ······	· E-06
10 ⁻³ (m)	
100	
10 ³ (k)	
10 (K)	
10 (101)	• 15.+116

Note

The data delimiter, bit switch 6 on the HP-IB Control Switch, is set at the factory to comma (,). This causes the instrument to output all data (DISPLAY A data, DISPLAY B data, and, if Comparator is used, Comparator data) as a continuous string. When the data delimiter is set to CR/LF, a carriage return and line feed signal is output after each field. This is useful when outputting data to certain peripherals, such as a printer.

Note

The EOI signal is output with the LF signal.

- [2] PACKED BINARY mode (Set using HP-IB remote program code "P1")
- (1) DISPLAY A/B

4th byte 5th byte $\frac{\texttt{BBBBBBBB}}{(5)}$

(B: 0 or 1)

- (1) Status of DISPLAY A
- (2) Status of DISPLAY B
- (3) Measurement Range
- (4) Value* of DISPLAY A (not including decimal point and unit)
- (5) Value* of DISPLAY B (not including decimal point and unit)
- * Output data is the binary equivalent of the measured value.

Note

The first byte includes DISPLAY A status, DISPLAY B status, and measurement range. The value of the byte is output in decimal. For example, DISPLAY A status is OF (1), DISPLAY B status is "blank" (3), and measurement range is 5 (see Table 3-15), the byte will be as shown below.

The decimal equivalent of this is 117. This is the value that will be output.

2 COMPARATOR (Option 002 only)

$$(\frac{BB}{1})$$
 $(\frac{BB}{2})$ $(\frac{BBBB}{3})$

- (1) Status of L/C/|Z|
- (2) Status of D/Q/ESR/G
- (3) BIN number

Note

Status data of DISPLAY A and DISPLAY B, measurement range, and status and BIN number data of Comparator are each represented as a number, as listed in Table 3-15.

Note

Values displayed on DISPLAY A and DISPLAY B are output as number of counts. Actual measured values are obtained with measurement range and output data values.

Note

The EOI signal is output with the last data byte.

Table 3-14. Data Output Codes for ASCII Mode

Item	Information	Code
Circuit Mode	←	Р
	• □ •••	S
Data Status of	Normal	N
DISPLAY A/B	Normal on	D
	Deviation Measurement Overflow	0
	Underflow	U
	Change Function	С
	Blank (used only for DISPLAY B)	В
Function of DISPLAY A	L	L
	C	C L
	HIGH SPEED L HIGH SPEED C	C
	IZI	Z
Function of DISPLAY B	D	D
	Q	Q
	ESR G	R G
	θ	T
	HIGH SPEED L*1	N
	HIGH SPEED C*1	
Data Status of	Bin IN	I
L/C/IZI for	HIGH	Н
Comparator	LOW Embedded	L E*2
	Undefined	Π* 3
Data Status of	Limit IN	I
D/Q/ESR/G for	HIGH	H
Comparator	LOW	L
•	Undefined	Ω*3
Bin Number	Out of Bin	0
	BIN1	1 2 3
	BIN2 BIN3	2 3
	BIN4	4
	BIN5	5
	BIN6	6
	BIN7	7
	BIN8 BIN9	8 9
	DINA	1

^{*1} HIGH SPEED C and HIGH SPEED L have the same output codes.

 $^{^{\}star\,2}$ This code appears when the measurement value is between two continued bins.

^{*3} This code appears when DISPLAY A or B indicates "CF" or blank.

SECTION III

Table 3-15. Data Output Codes for PACKED BINARY Mode

Item	Information	Code
Data Status of DISPLAY A/B	Normal Overflow Underflow Change Function or Blank	0 1 2 3
Measurement Range	1μΗ/1pF 10μΗ/10pF 100μΗ/100pF/10Ω 1mΗ/1nF/100Ω 10mΗ/10nF/1kΩ 100mΗ/100nF/10kΩ 1Η/1μF/100kΩ 10μF/1ΜΩ	1 2 3 4 5 6 7 8
Data Status of L/C/ Z for Comparator	Bin IN HIGH LOW Embedded or Undefined	0 1 2 3
Data Status of D/Q/ESR/G for Comparator	Bin IN HIGH LOW Undefine	0 1 2 3
Bin Number	Out of Bin BIN1 BIN2 BIN3 BIN4 BIN5 BIN6 BIN7 BIN8 BIN8	0 1 2 3 4 5 6 7 8

3-98. OUTPUT DATA FORMAT

3-99. The 4277A can output measurement data to a controller or can output data directly to an external "listener" device (i.e., printer). There are six Output Data Formats, F1 through F6. The contents of the output data for each format are listed in Table 3-16.

Note

In ADDRESSABLE mode, only F1 through F4 can be set by HP-IB remote control. Output data can be in either ASCII mode or PACKED BINARY mode. Also, in ADDRESSABLE mode, bit switch settings have no relation to Output Data Format.

Note

In TALK ONLY mode, any Output Data Format, F1 through F6, can be set by HP-IB Control Switch settings (bit 1 through bit 3). Also, in TALK ONLY mode, data can be output in ASCII mode only.

Note

Comparator data is output when the comparator is in RUN mode. When F1, F3, or F5 is selected, if comparator is not in RUN mode, or if the comparator is not connected to the instrument, contents of output data is Type I.

Note

If the instrument is set to TALK ONLY mode, the Output Data Format number will be briefly displayed on DISPLAY A (instead of the HP-IB address) when the instrument is turned on. The displayed number, however, will be the format number plus 50. For example, if the Output Data Format is F3, the number displayed on DISPLAY A at turn on will be 53.

Table 3-16. Output Data Formats

			Output Data		Output Mode	
Format		Display A	Display B	Comparator	ASCII	PACKED BINARY
F1	I	Yes	Yes	No	Yes	Yes
	II	No	No	Yes	103	
F2	I	Yes	Yes	No	Yes	Yes
	II	Yes	Yes	Yes		
F3	I	Yes	No	No	Yes	Yes
	II	No	No	Yes		
F4	I	Yes	No	No	Yes	Yes
	II	Yes	No	Yes	100	
F5	I	No	Yes	No	Yes	No
	II	No	No	Yes		
F6	I	No	Yes	No	Yes	No
	ΙΙ	No	Yes	Yes		

3-100. LEARN MODE DATA

3-101. All front panel settings and comparator key settings are output from the 4277A when the program code "LN" is used (refer to Figure 3-28). The data is output in the following format:

$$\frac{FRnnnnEN}{(1)} \ \frac{An}{(2)} \ \frac{Bn}{(3)} \ \frac{Cn}{(4)} \ \frac{Dn}{(5)} \ \frac{Fn}{(6)} \ \frac{Mn}{(7)} \ \frac{Pn}{(8)}$$

$$\frac{\text{Rn}}{(9)} \frac{\text{Sn}}{(10)} \frac{\text{Tn}}{(11)} \frac{\text{Un}}{(12)} \frac{\text{Vn}}{(13)} \frac{\text{Xn}}{(14)}$$

$$\frac{\text{BI}\pm\text{nnnnEN}}{(15)}~\frac{\text{En}}{(16)}\frac{\text{Gn}}{(17)}\frac{\text{Ln}}{(18)}\frac{\text{Nn}}{(19)}~\frac{\text{CR}\,\text{LP}}{(20)}$$

- (1) Test Frequency Setting
- (2) A1 A5: DISPLAY A Function
- (3) B1 B3: DISPLAY B Function
- (4) Cl C3: Circuit Mode
- (5) D0, D1: Data Ready
- (6) Fl F4: Output Data Format
- (7) M1 M3: Measurement Speed
- (8) P0, P1: Output Data Mode (ASCII or Packed Binary)
- (9) R1 R8: LC | Z | Range
- (10) S0, S1: Self Test
- (11) T1, T2: Trigger Mode
- (12) U0, U1: Auto Range
- (13) V1, V2: Test Signal Level
- (14) X0, X1: Deviation Measurement
- (15) DC Bias Setting
- (16) E0, E1: Comparator Enable
- (17) G0, G1: Comparator Run
- (18) L1, L2: Comparator Limit Input
- (19) N1 N9: Comparator Bin Number for L/C/|Z|
- (20) Data Terminator

Note

DC Bias data is not output when DC Bias option (Option 001) is not installed. Similarly, when the comparator (Option 002) is not installed, comparator data is not output.

Note

Don't open the UNKNOWN terminals no test fixture or test leads when LEARN mode data is output in AUTO range. If so, measurement range is not fixed in some cases. There is no problem when a test fixture is connected to the UNKNOWN terminals or when measurement range is set to MANUAL mode.

3-102. RECALL COMPARATOR LIMIT DATA

3-103. Low and high bin limits can be output from the 4277A when the program code "LR" is used (refer to Figure 3-30). The L/C/|Z| limits for the designated bin are output when program code "L1" is used. When program code "L2" is used, D/Q/ESR/G limits are output. The data is output in the following format:

$$\frac{\text{LLXX.XXXEN}}{(1)} \quad \frac{\text{LHXX.XXXEN}}{(2)} \quad \frac{\text{CR} \quad \text{CR}}{(3)}$$

- (1) Value of Low Limit (position of decimal point is coincident with display)
- (2) Value of High Limit (position of decimal point is coincident with display)
- (3) Data Terminator

3-104. SERVICE REQUEST STATUS BYTE

3-105. The 4277A outputs an RQS (Request Service) signal whenever it is set to one of the five possible service request states. Figure 3-26 shows the contents of the Status Byte.

Bit	8	7	6	5	4	3	2	1
Content		RQS		Error	Trigger Too Fast	Zero Offset Self Test End	Syntax Error	Data Ready

Bit 7 (RQS) indicates whether or not a service request exists. Bits 6 and 8 are always zero (0). Bits 1 through 5 identify the type of service request. Following are the service request states of the 4277A:

- (1) Bit 1: This bit is set when measurement data is ready for output.
- (2) Bit 2: This bit is set when the remote program contains a syntax error.
- (3) Bit 3: This bit is set when Zero Offset or Self Test is completed under remote control.
- (4) Bit 4: This bit is set when the 4277A is externally triggered before the measurement has been completed.
- (5) Bit 5: ① This bit is set when the 4277A has one of the following operation errors:

 OFF, E10, E13, E14, E15, E16, E17, E18, E20
 - 2 If Self Test is set to ON, this bit is set when the instrument fails Self Test.

Error Codes: E36 - E43

Figure 3-26. Status Byte for the 4277A.

3-106. PROGRAMMING GUIDE FOR 4277A	or			
3-107. Sample programs that can be run on the HP-85, 9835A/B, 9845B, 9826A, or 9836A are given in Figures 3-27 through 3-30. These	9	9835A/B	Desktop Co 98332A I/O	
programs are listed in Table 3-17.	(3)	98034A	HP-IB CARD	INTERFACE
Note				
G . 11	or			
Controller-specific HP-IB programming information is given in the controller's programming manual.	(2)	9845B	Desktop Co 98412A I/O	-
Note	(3)	98034A	HP-IB CARD	INTERFACE
Following equipment is required to run			0111111	
the sample programs:	or			
(1) 4277A LCZ Meter	(2)	9826A	Desktop Co	mputer
(2) HP-85 Personal Computer 00085-15003 I/O ROM	or			
	(2)	9836A	Desktop Co	mputer
(3) 82937A HP-IB INTERFACE			•	-

Table 3-17. Sample Programs

Sample Program	Figure	Description
1	3-27	Remote control and data output program
2	3-28	How to use remote program code "LN."
-3	3-29	How to input low and high bin limits for the Comparator.
4	3-30	How to use remote program code

Sample Program 1

Description:

This program has three capabilities:

- (1) Control of the 4277A via the HP-IB
- (2) Trigger of the 4277A via the HP-IB
- (3) Data output from the 4277A via the HP-IB

- 10 REMOTE 717
- 20 CLEAR 717
- 30 DIM A\$[50]
- 40 OUTPUT $\frac{717}{(1)(2)}$; "A2B1T2P0F1" (3)
- 50 OUTPUT 717; "FR 100 EN"
- 60 OUTPUT 717; "EX"
- 70 ENTER 717; A\$
- 80 DISP A\$
- 90 PRINT A\$
- 100 END
- (1) HP-IB INTERFACE Select Code (82937A or 98034A)
- (2) HP-IB Address of the 4277A
- (3) Program codes for the 4277A (refer to Table 3-13)
- (4) Program codes for parameter setting of the 4277A (refer to paragraph 3-96)
- (5) This is equivalent to: TRIGGER 717

Figure 3-27. Sample Program 1 (Sheet 1 of 2).

SECTION III

If program code "Pl" is used, refer to the following program:

Program:

- 10 REMOTE 717
- 20 CLEAR 717
- 30 OUTPUT 717; "A2B1T2P1F1"
- 40 OUTPUT 717; "EX"
- 50 ENTER 717 USING $\frac{\text{"\%, B, W, W"}}{\text{(1)}} \stackrel{\text{(2)}}{\text{(2)}} \stackrel{\text{(3)}}{\text{(3)}}$
- 60 DISP A; B; C
- 70 PRINT A; B; C
- 80 END
- (1) ENTER terminator. "#" can also be used.
- (2) Specifier for entering one byte (8-bit) of binary data
- (3) Specifier for entering two bytes (16-bit) of binary data

Figure 3-27. Sample Program 1 (Sheet 2 of 2).

Sample Program 2

Description:

The remote program code "LN" can be used to read the front panel control settings and comparator settings. This program shows how to use "LN."

- 10 REMOTE 717
- 20 CLEAR 717
- 30 DIM A\$[60]
- 40 OUTPUT 717; "LN"
- 50 ENTER 717; A\$
- 60 DISP A\$
- 70 PRINT A\$
- 80 END

Figure 3-28. Sample Program 2.

Sample Program 3

Description:

This program shows how to input low and high bin limits via the HP-IB when the instrument is equipped with Option 002.

```
10 REMOTE 717
20 CLEAR 717
30 DIM A$[50]
40 OUTPUT 717; "A2B1R4T2P0F2"
                     (1)
50 OUTRUT 717; "FR100EN"
60 OUTPUT 717; "E1G0ER"
                   (2)
70 OUTPUT 717; "L1N1 LL.995ENLH.998EN"
                  (2)
80 OUTPUT 717; "N2LL1ENLH1.1EN"
90 OUTPUT 717: "N3LL 1.0001 ENLH 1.2 EN"
100 OUTPUT 717; "L2LL0ENLH.001EN"
110 OUTPUT 717; "G1"
120 OUTPUT 717; "EX"
130 ENTER 717; A$
140 DISP A$
150 PRINT A$
160 END
```

- (1) Measurement range must be set.
- (2) Program codes for comparator setting
- (3) Program codes for inputting low and high bin limits

Figure 3-29. Sample Program 3.

Model 4277A SECTION III

Sample Program 4

Description

The remote program code "LR" can be used to recall the high and low limits for each bin. This program shows how to use "LR."

```
10 REMOTE 717
20 DIM A$[30]
30 OUTPUT 717; "E1G0"
40 FOR I=1 TO 9
50 OUTPUT 717; "L1N"; I, "LR"
60 ENTER 717; A$
70 PRINT A$
80 NEXT I
90 OUTPUT 717; "L2LR"
100 ENTER 717; A$
110 PRINT A$
120 END
```

Figure 3-30. Sample Program 4.

3-108. OPTIONS

3-109. Options are standard modifications to the instrument that implement user's special requirements for minor functional changes. Operating instructions for the 4277 A's options (except rack mount and handle installation kit options) and associated information are described in the following paragraphs.

3-110. Two options are available, as listed in the following tables:

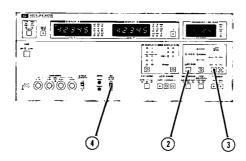
Option No.	Option Name
001	Internal DC Bias
002	Comparator/Handler Interface

Option contents are as follows:

Option No.	Contents
001	A22 Internal DC Bias Board Assembly
002	Comparator/Handler Interface Kit

3-111. OPTION 001 INTERNAL DC BIAS (-40V to +40V)

3-112. Option 001 adds an internal dc bias supply variable from .00 volts to ±40.0 volts. The dc bias voltage can be controlled manually from the front-panel or remotely via the HP-IB. Manual control and dc bias applications under HP-IB control are described in Figure 3-31. The internal de bias source has two ranges and a maximum resolution of 10mV. Refer to Table Output from the bias source is 3-18. each time the automatically set to 0V instrument is turned on or when the CLEAR command is sent via the HP-IB. DC bias voltage is applied to the DUT only when the DC BIAS select switch on the rear panel is set to INT and the DC BIAS ON/OFF switch on the front panel is set to ON. If the DC BIAS ON/OFF switch is set to OFF, OFF will be briefly displayed on the FREQUENCY/DC BIAS display each time a new bias voltage is set. The dc bias voltage actually applied to the DUT depends on the impedance of the DUT and in most cases will be less than the voltage value displayed on the FREQUENCY/DC BIAS display. By connecting a DVM or an oscilloscope to the EXT INPUT/INT MONITOR connector on the rear panel, the dc bias voltage actually applied across the DUT can be monitored. Refer to Figure 3-32.


Table 3-18. Bias Voltage Resolution

Bias Voltage Range	Resolution	
0V to ±9.99V	10mV	
±10.0V to ±40.0V	100mV	

Note

For the option 001 operation, set the DC BIAS select switch on the rear-panel to INT.

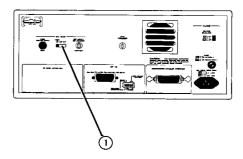
OPTION 001 INTERNAL DC BIAS OPERATION

- 1. Set the DC BIAS select switch (1) to INT.
- 2. Connect the 16047A Test Fixture to the UNKNOWN terminals.

Note

Any of the test fixtures and test leads listed in Table 1-3 can be used for measurements requiring dc bias.

- 3. Turn on the 4277A.
- Perform OPEN and SHORT Zero Offset adjustments as described in paragraph 3-51.
- 5. Set the instrument's front panel controls as appropriate for the desired measurement.
- 6. Press the FREQ/DC BIAS select key 2. The DC BIAS lamp will come on.
- 7. Set the desired voltage by pressing the appropriate FREQ/DC BIAS control key 3. The voltage value will be displayed on the FREQUENCY/DC BIAS display.


Note

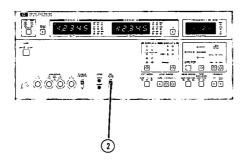
OFF will be briefly displayed on the FREQUENCY/DC BIAS display when the FREQ/DC BIAS control key is released, if the DC BIAS ON/OFF switch (4) is set to OFF.

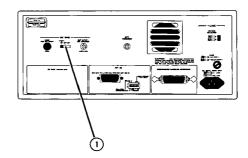
8. Connect the DUT to the test fixture.

CAUTION

DO NOT CONNECT A CHARGED DUT TO THE TEST FIXTURE. DOING SO MAY DAMAGE THE INSTRUMENT.

- 9. Set the DC BIAS ON/OFF switch 4 to ON.
- 10. If you're measuring a capacitive DUT, all sufficient time for the DUT to charge up to the applied voltage.
- 11. Read the measured values displayed on DISPLAY A and DISPLAY B.
- 12. Set the DC BIAS ON/OFF switch 4 to OFF.
- 13. Wait until the voltage across the DUT return to 0V.
- 14. Remove the DUT from the test fixture.


Note


For reasons of safety and measurement accuracy, the voltage actually applied to the DUT should be monitored. Refer to Figure 3-32.

Note

When the DC BIAS switch on the front panel has been set to ON and the desired bias voltage is entered, the instrument automatically takes a wait time of approximately 0.8 seconds before outputting the bias voltage (after completion of the bias data Accordingly, input). it takes approximately (0.8 seconds + bias settling time) for the bias voltage to be applied to the DUT as well as to be settled after the bias data has been set. For the bias settling time, refer to Table 1-2 Supplemental Performance Characteristics.

[HP-IB Operation]

The following procedure is an example of dc bias remote control via the HP-IB.

- 1. Set the DC BIAS select switch (1) to INT.
- 2. Connect the 16047A Test Fixture to the UNKNOWN terminals.

Note

Any of the test fixtures and test leads listed in Table 1-3 can be used for measurements requiring dc bias.

- 3. Turn on the 4277A.
- 4. Perform OPEN and SHORT Zero Offset adjustments as described in paragraph 3-51.
- 5. Set the DC BIAS ON/OFF switch (2) to ON.

Note

The dc bias voltage is automatically set to 0V each time the instrument is turned on.

- 6. Set the front panel control via the HP-IB.
 - * Example of setting the instrument for a C-D measurement at 10kHz, external trigger.

REMOTE 717 CLEAR 717 OUTPUT 717; "A2B1FR10ENF1T2"

- 7. Connect the DUT to the test fixture.
- 8. Set the desired dc bias voltage via the HP-IB.
 - * Example of setting a dc bias voltage of +10V.

OUTPUT 717; "BI10EN"

- 9. Wait until the dc bias voltage settles.
 - * Example of programming a 10ms wait.

WAIT 10

10. Trigger the instrument via the HP-IB.

OUTPUT 717; "EX"

or

TRIGGER 717

11. Read and print the measured values.

ENTER 717; A, B PRINT A, B 12. Set the bias voltage to 0V via the HP-IB.

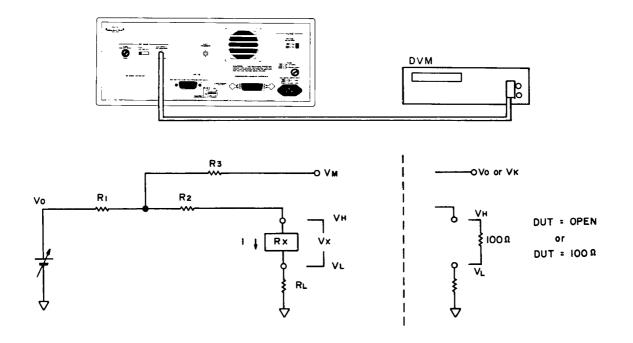
OUTPUT 717; "BIOEN"

- 13. Wait until the dc bias voltage returns to 0V.
 - * Example of programming a 10ms wait.

WAIT 10

14. Remove the DUT from the test fixture.

Note


The above remote programming examples can be used on the HP Model 85 (with 00085-15003 I/O ROM), Model 9835A, Model 9845B/C, Model 9826A, and Model 9836A.

Note

In the above examples, HP-IB address 17 was used.

Figure 3-31. Option 001 Internal DC Bias (Sheet 3 of 3).

INTERNAL DC BIAS VOLTAGE MONITOR

The internal dc bias voltage is monitored by a DVM or an oscilloscope at the EXT INPUT/INT MONITOR connector on the rear panel.

Note

The dc bias voltage monitored at the EXT INPUT/INT MONITOR connector may contain a small ac component.

When the DUT impedance is higher than $100 k\Omega$, the monitored voltage is equal to the dc voltage source voltage, and to the voltage applied to the DUT. These voltages, however, are different when the DUT impedance is less than $100 k\Omega$. The following paragraph describes how to measure the actual bias voltage across the DUT.

- 1. $R_1/R_2/R_L$ Detection
 - (a) Set the TEST SIG LEVEL to LOW.
 - (b) Set the LC | Z | range so that the range resistor value will be 100Ω . Refer to Figure 3-5.
 - (c) Set the DC BIAS voltage to +5V on the FREQUENCY/DC BIAS display.
 - (d) Connect nothing to the test fixture.

- (e) Set the DC BIAS switch on the front panel to ON.
- (f) Measure the monitor voltage (V₀) at the EXT INPUT/INT MONITOR connector.
- (g) Connect a reference resistor (R₀) (e.g., $100\Omega\pm1\%$) to the test fixture.
- (h) Measure the dc voltages at the HIGH and LOW terminals of the test fixture and at the EXT INPUT/INT MONITOR connector (V_H , V_L , and V_K).

Note

Connect the LOW terminal of the DVM or the oscilloscope to the GUARD terminal of the instrument.

(i) Calculate the resistances, R_1 , R_2 , and R_L , using the following equations:

$$R_{1} = (V_{0} - V_{K}) \cdot R_{0} / (V_{H} - V_{L})$$

$$R_{2} = (V_{K} = V_{H}) \cdot R_{0} / (V_{H} - V_{L})$$

$$R_{L} = V_{L} \cdot R_{0} / (V_{H} - V_{L})$$

Figure 3-32. Internal DC Bias Voltage Monitor (Sheet 1 of 2).

- 2. Actual Bias Voltage/Current Measurement
 - (a) Connect nothing to the test fixture.
 - (b) Measure the monitor voltage (V₀).
 - (c) Connect the desired sample to the test fixture.
 - (d) Measure the monitor voltage (V_M).

(e) Calculate the actual voltage applied to the DUT (V) or the actual current through the DUT (I) using the following equations:

$$I = (V_0 - V_M)/R_1$$

 $V = V_0 - (R_1 + R_2 + R_L)\cdot I$

Note

Repeat step 2 each time the DUT is changed since the monitor voltage (V_M) depends on the DUT impedance.

Figure 3-32. Internal DC Bias Voltage Monitor (Sheet 2 of 2).

3-113. OPTION 002 COMPARATOR/HANDLER INTERFACE

3-114. Option 002 equips the standard 4277A with a comparator function and a handler (component sorter) interface capability. The comparator provides go/no-go testing and ten-bin sorting. The handler interface is for control of an automatic component handler.

3-115. Up to nine sets of high/low limits for L, C, or |Z| measurement, and one set of high/low limits for D, Q, ESR, or G measurement can be keyed in from the 16064A keyboard or entered via the HP-IB. When measurement is made, the comparator compares the measured values displayed on DISPLAY A and DISPLAY B with the stored high/low limits. If the measured values fit any set of limits, the bin number for that set is displayed on the FREQUENCY/DC BIAS display. If the measured values do not fit any of the limits, zero (0), the number for the out-of-limits bin, is displayed. Go/no-go decisions are indicated by two sets of LOW/IN/HIGH LED lamps on the 16064A Comparator/Handler Interface keyboard. operation is described in Figures 3-34.

3-116. The 16064A has a 36-pin female Amphenol connector for interfacing with an automatic component handler. The 16064A results--LOW/IN/HIGH sends comparison decisions and bin number-to the handler, and receives control signals via a user-fabricated interface cable constructed using the furnished 36-pin male Amphenol connector 1251-0084). Pin assignments are given in Figure 3-33. For complete information, refer to the 16064A Operation Note.

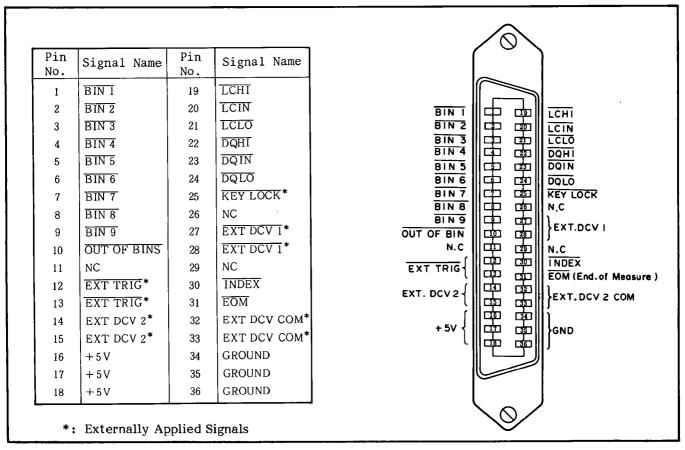
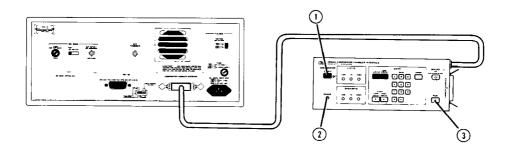



Figure 3-33. Pin Assignments for the Handler Interface Connector (HP 16064A).

OPTION 002 COMPARATOR OPERATION

- 1. Connect the Model 16064A COMPARATOR/HANDLER INTERFACE to the COMPARATOR/HANDLER INTERFACE connector on the 4277A's rear-panel.
- Connect the desired test fixture to UNKNOWN terminals.
- 3. Turn on the instrument.
- 4. Perform OPEN and SHORT Zero Offset adjustments as described in paragraph 3-51.
- 5. Set the front panel controls as appropriate for the desired measurement.
- 6. Press the ENABLE key (1) on the 16064A. The LED lamp at the center of the key should come on.

Note

If El6 is displayed or DISPLAY A, press the ERASE button 2 on the 16064A to erase previously stored limits.

- 7. Enter the high/low limits for L/C/|Z| or D/Q/ESR/G.
- 8. Press the RUN key ③ on the 16064A. The comparator will then begin comparing all measured values with the high/low limits entered in step 6. The appropriate LED lamps—LOW, IN, HIGH—will be lit and the number of the bin whose high/low limits fit the measured values will be displayed on the FREQUENCY/DC BIAS display.

Example:

If the bin limits listed in Tables A and B are entered, the measured values listed in Table C will cause the comparison results shown in Table D.

Note

LOW and HIGH limits are inclusive; that is, if the measured value is exactly equal to the LOW or HIGH limit of a bin, the measured value fits the limits for that bin. Also, if a measured value fits the limits of more than one bin (bin limits overlap), the comparator selects the bin with the lower number. An example follows.

Bin 1: 100pF to 200pF Bin 2: 150pF to 250pF Measured Value: 190pF Selected Bin: Bin 1

Note

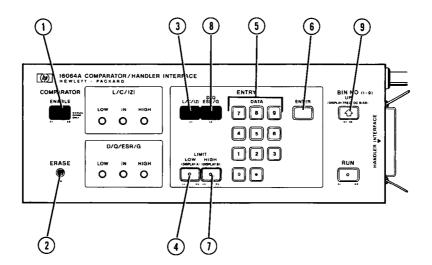
If the LOW/HIGH limits for D/Q/ESR/G are not entered, or when the instrument is set to HIGH SPEED L or HIGH SPEED C, the IN lamp for D/Q/ESR/G will be always lit. D/Q/ESR/G comparison is not performed, however.

Table A. Limits for L/C/|Z|

BIN No.	LOW Limit	HIGH Limit
1	1 nF	1.1 n F
2	1.1 nF	1.2 n F
3	1.2 n F	1.3 n F
4	1.3 n F	1.4 n F
5	1.4 n F	1.5 n F
6	2 n F	2.5 n F
7	2.5 nF	3 n F

Table B. Limits for D/Q/ESR/G

LOW Limit	HIGH Limit
.01	.05


Table C. Measured Values

Sample	Sample Measured Sample Measure			asured	
No.	Data		No.	MC	Data
	С	1.22 n F		С	1.1 n F
1	D	.013	6	D	.02
2	С	1.08 n F	7	С	1.18 n F
2	D	.005		D	.071
0	С	.8 n F	8	С	4.1 nF
3	D	.025		D	.033
4	С	2.75 n F	9	С	1.5 n F
4	D	.06		D	.029
5	С	.95 n F	10	С	1.72 n F
3	D	.055		D	.025

Table D. Comparison Results

Sample No.	L/C/ Z Lamp LOWINHIGH	D/Q/ESR/ G Lamp LOW IN HIGH	FREQUENCY /DC BIAS Display
1	• 🌣 •	• 🌣 •	3
2	• ☆ •	☆ • •	
3	☆ • •	• 🌣 •	
4	• ☆ •	• • 🌣	
5	<i></i>	• • ·	
6	• 🌣 •	• 🌣 •	1
7	• 🌣 •	• • 🌣	
8	• • 🌣	• 🌣 •	
9	• 🔅 •	• 🌣 •	5
10	-☆- ● -☆-	• 🔅 •	G

COMPARATOR LIMIT SETTING

- 1. Press the ENABLE key ①. The LED lamp at the center of the key should come on.
- 2. Press the ERASE button ② to erase previously stored limits. One (1) will be displayed on the FREQUENCY/DC BIAS display.

[L/C/|Z| Limit Entry]

- 3. Press the L/C/|Z| key (3).
- 4. Press the LIMIT LOW key (4).
- 5. Key in the desired LOW limit using the DATA keys (5). The LOW limit value will be displayed on DISPLAY A.
- 6. Press the ENTER key (6). The LOW limit will be stored for bin 1. Also, the maximum allowable value that can be entered for the HIGH limit on the present LC | Z | RANGE will be displayed on DISPLAY B.

Note

If the LOW or HIGH limit is higher than the full scale value of the existing LC | Z | RANGE, E18 will be briefly displayed on DISPLAY A when the ENTER key is pressed. Re-enter the limits correctly.

7. Press the LIMIT HIGH key 7.

- 8. Key in the desired HIGH limit using the DATA keys (5). The HIGH limit value will be displayed on DISPLAY B.
- 9. Press the ENTER key (6). The HIGH limit will be stored for bin 1.
- 10. Press the BIN NO UP key (9). Two (2) will be displayed on the FREQUENCY/DC BIAS display.
- 11. Repeat steps 4 through 9 to enter the LOW and HIGH limits for bin 2.
- 12. Repeat steps 10 and 11 for bins 3 through 9.

[D/Q/ESR/G Limit Entry]

13. Press the D/Q/ESR/G key (8).

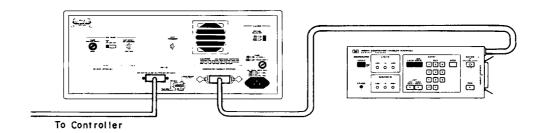
Note

When D/Q/ESR/G limits are being entered, no bin number is displayed on the FREQUENCY/DC BIAS display.

- 14. Press the LIMIT LOW key (4).
- 15. Key in the desired LOW limit using the DATA keys (5). The LOW limit value will be displayed on DISPLAY A.

16. Press the ENTER key 6. The LOW limit will be stored. Also, the maximum allowable value that can be entered for the HIGH limit will be displayed on DISPLAY B.

Note


If the LOW or HIGH limit is higher than the full scale value of the existing DISPLAY B range, E18 will be briefly displayed on DISPLAY A when the ENTER key is pressed. Re-enter the limits correctly.

- 17. Press the LIMIT HIGH key 7.
- 18. Key in the desired HIGH limit using the DATA keys (5). The HIGH limit value will be displayed on DISPLAY B.
- 19. Press the ENTER Key (6).

Note

Press the ERASE button ②, erases the high/low limits of all bins.

[HP-IB OPERATION]

- 1. Connect the Model 16064A COMPARATOR/HANDLER INTERFACE to the COMPARATOR/HANDLER INTERFACE connector on the 4277A's rear-panel.
- Connect the desired test fixture to the UNKNOWN terminals.
- 3. Turn on the instrument.
- 4. Perform OPEN and SHORT Zero Offset Adjustments.
- 5. Set the front panel controls as appropriate for the desired measurement and enable the 16064A via the HP-IB.

* Example of setting C-D measurement, lnF range, and 100kHz test frequency

REMOTE717 CLEAR 717 OUTPUT 717;"A2B1FR100ENR4T2" OUTPUT 717;"E1ER"

- 6. Enter the LOW/HIGH limits for L/C/ \mid Z \mid via the HP-IB.
 - * Example of setting a low limit of .950nF and a high limit = 1.1nF

OUTPUT 717;"LL.95ENLH1.1EN"

If necessary, enter the limits for the next bin (Bin 2).

Figure 3-34. Option 002 Comparator (Sheet 4 of 7).

* Example of setting bin 2's low limit to 1.1001nF and high limit to 1.2nF

OUTPUT 717;"N2"
OUTPUT 717;"LL1.1001ENLH1.2EN"

Note

The same setting can be made by the following program:

OUTPUT 717;"N2" OUTPUT 717;"LH1.2EN"

- 7. Enter the limits for D/Q/ESR/G via the HP-IB.
 - * Example of setting a low limit of .0000 and a high limit of .005

OUTPUT 717;"L2" OUTPUT 717;"LL0ENLH.005EN"

Note

The same setting can be made by the following program:

OUTPUT 717;"L2" OUTPUT 717;"LH.005EN"

Note

Comparator operations can be done without high/low limits for D/Q/ESR/G.

- 8. Start the comparator operation by HP-IB program.
 - * Example of starting the comparator operation:

OUTPUT 717;"G1"

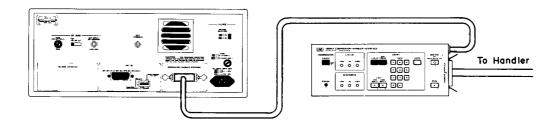
9. Connect the DUT to the test fixture.

- 10. Trigger the instrument via the HP-IB.
 - * Example of triggering the instrument:

OUTPUT 717;"EX"

or

TRIGGER 717


If necessary, read the comparison results via the HP-IB.

ENTER 717;A\$ PRINT A\$

Note

The HP-IB address code in the above examples is 17 (10001).

OPTION 002 HANDLER INTERFACE OPERATION

The 16064A outputs four types of signals to the component handler.

- (1) Comparison result signals ($\overline{\text{LCHI}}$, $\overline{\text{LCIN}}$, $\overline{\text{LCIN}}$, $\overline{\text{DQIN}}$, $\overline{\text{DQLO}}$)
- (2) $\frac{\text{Bin number signals } (\overline{\text{BIN1}} \dots \overline{\text{BIN9}}, \overline{\text{OUT-OF-BIN}})$
- (3) DUT change signal (INDEX)
- (4) Comparison complete signal (EOM)

Type (1) signals correspond to the LOW/IN/HIGH LED lamps on the 16064A keyboard. Type (1) signals are divided into two groups of three. When the signal line corresponding to the lit LED lamp goes LOW, the other signal lines in that group stay HIGH.

Type (2) signals correspond to the bin numbers displayed on the FREQUENCY/DC BIAS display. When the signal line corresponding to the displayed bin number goes LOW, the other signal lines stay HIGH.

The type (3) signal, INDEX, goes LOW when the 4277A has completed the analog portion of the measurement. The DUT can be disconnected from the measurement terminals and the next one can be connected. Comparison results, however, are not yet valid.

The type (4) signal, $\overline{\text{EOM}}$, goes LOW when the 4277A has completed the measurement and the comparator has made a judgement. Comparison results are now valid.

All signals are negative true, and all are from TTL open-collector outputs. Pull-up resistors are installed. TTL voltage levels or higher voltages (up to 30V) are possible by changing a few jumper settings inside the 16064A. Refer to the 16064A Operating Note for details.

Signals sent from the external component handler to the 16064A are a trigger signal (EXT TRIG) that starts measurement and a key lock signal (KEY LOCK) that disables all control keys during comparator operation. To trigger the 4277A, apply a LOW signal (at least 100 µs duration) to the EXT TRIG line. To disable the control keys of the 4277A and 16064A, apply a LOW signal to the KEY LOCK line.

Note

The INDEX and KEYLOCK signals are not mandatory for comparator/handler interface applications.

Note

More information on the Option 002 Handler Interface is given in the 16064A Operating Note.

Figure 3-34. Option 002 Comparator (Sheet 6 of 7).

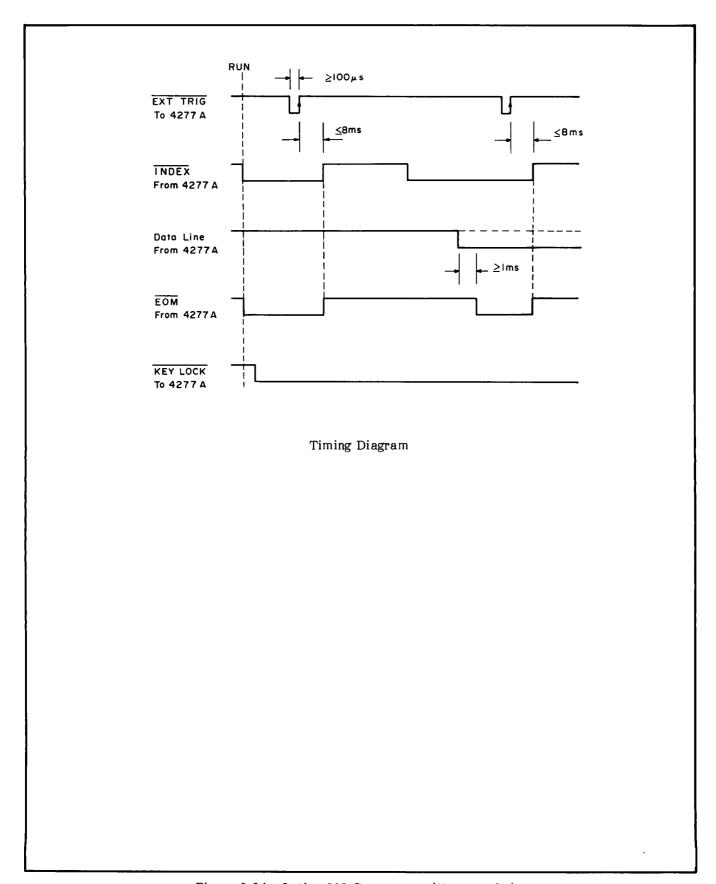


Figure 3-34. Option 002 Comparator (Sheet 7 of 7).

Table 4-1. Recommended Equipment (Sheet 1 of 2)

Equipment	Critical Specifications	Recommended Model/Note	Use*
Digital Voltmeter	Voltage range: 10mV to 100Vf.s. Resolution: 0.1mV Accuracy: 0.05% Input impedance: >10MΩ	HP 3478A	P, A, T
RF Voltmeter	Voltage range: 10mV to 3Vrms f.s. Bandwidth: 10kHz to 1MHz Accuracy: 1%	HP 400E P, A and HP 3403C	
Frequency Counter	Maximum frequency: >1MHz Accuracy: 0.001% Trigger level: Adjustable	HP 5314A P, A, T	
DC Power Supply	Maximum output voltage: >50V Resolution: <100mV	HP 6206B	Р
Oscilloscope	Bandwidth: 100MHz Sensitivity: 5mV/DIV	HP 1740A	А, Т
Oscillator	Frequency: 1kHz Output voltage: 1mV	HP 652A	Т
Signature Analyzer		HP 5004A	Т
Test Cables	BNC (m)-to-BNC (m), 61cm long, 1 ea.	HP 11170B	P, A
	BNC (m)-to-BNC (m), 10cm long, 1 ea.		А, Т
	BNC (m)-to-BNC (m), 30cm long, 2 ea.	HP 11170A	T
	BNC (m)-to-Dual Banana Plug, 1 ea.	HP 11001A	Р, А
	Dual Banana Plug-to-Alligator Clip, 1 ea.	HP 11002A	P, A, T
	BNC (m)-to-Dual Alligator Clip,10cm long, 2 ea.	Refer to the troubleshooting diagram A2-17.	Т
	Alligator Clip-to-Alligator Clip, 20cm long, 1 ea.		Т
Adaptors	BNC (f)-to-BNC (f), 5 ea.	HP P/N 1250-0080	Р, Т
Oscilloscope Probes	10:1 Divider Probe Input impedance: 10MΩ	HP 10004D	А, Т
	1:1 probe	HP 10007B	A
Test Leads		HP 16048A	Р, Т

^{*}P = Performance Test, A = Adjustment, T = Troubleshooting

SECTION IV Model 4277A

Table 4-1. Recommended Equipment (Sheet 2 of 2)

Equipment	Critical Specifications	Recommended Model/Note	Use*
Capacitance Standards	lpF±0.03% 10pF±0.03% 100pF±0.03% 1000pF±0.03% Useable frequency: Up to 1MHz	HP 16381A HP 16382A HP 16383A HP 16384A	Р, А, Т
Resistance Standards	0Ω 10Ω $100\Omega\pm0.03\%$ $1k\Omega\pm0.03\%$ $1k\Omega\pm0.03\%$ $10k\Omega\pm0.03\%$ $00k\Omega\pm0.03\%$ OPEN termination SHORT termination	HP 16074A P, A, T Standard Resistor Set	
Capacitors	1nF±5%	HP P/N 0160-2218	Т
Resistors	4.7Ω±5% 1/4W	HP P/N 0683-0475	T
	560Ω±5% 1/4W	HP P/N 0683-5615	Т
	lkΩ±5% 1/2W	HP P/N 0757-0159	Т
	10kΩ±1% 1/2W	HP P/N 0757-0839	Т
	100kΩ±1% 1/8W	HP P/N 0757-0465	Т
HP-IB Controller		HP-85/ w 00085-15003/ w 82936A/ w 82937A	A

^{*}P = Performance Test, A = Adjustment, T = Troubleshooting

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. This section provides the tests and the procedures used to verify the specifications listed in Table 1-1. All tests can be performed without access to the interior of the instrument. A simpler operational test is presented in Section III under Self Test. The performance tests can be used when performing incoming inspection of the instrument and when verifying that the instrument meets performance specifications after troubleshooting or adjustment or both. If the performance tests indicate the instrument is operating outside specified limits, check to see if the controls on the instrument used in the test and the test setup itself are correct and then proceed with adjustments or troubleshooting or both.

Note

To ensure proper test results and instrument operation, Hewlett-Packard recommends a 30-minute warm-up and stabilization period before performing any of the performance tests.

Note

All performance tests except for the HP-IB Interface Test should be performed in an ambient temperature range of 23 °C±5 °C.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required to perform all of the performance tests is listed in Table 4-1. Any equipment that satisfies or exceeds the critical specifications listed in the table may be used as a substitute for the recommended models.

Accuracy checks described in this section use the HP 16380A series standard capacitors (16381A, 16382A, 16383A and 16384A) and 16074A Standard Resistor Set. The characteristics of the equipment satisfy the performance requirements for the accuracy checks and are especially suited for use as the 4277A's accuracy test standards.

Note

Components used as standards should be calibrated by an instrument whose specifications are traceable to NBS or an equivalent standards group; or calibrated directly by an authorized calibration organization such as NBS. The calibration cycle should be in accordance with the stability specifications for each component.

4-5. TEST RECORD

4-6. Performance test results can be recorded on the Test Record at the completion of the test. The Test Record is at the end of this section and it lists all the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance, trouble-shooting, and after repair or adjustment.

4-7. CALIBRATION CYCLE

4-8. This instrument requires periodic verification of performance. Depending on the conditions under which the instrument is used, e.g., environmental conditions or frequency of use, the instrument should be checked with the performance tests described here at least once a year. To keep instrument down-time to a minimum and to insure optimum operation, preventive maintenance should be performed at least twice a year.

-ACCURACY TEST CONSIDERATIONS

This paragraph discusses how the 4277A accuracy is tested and verified. As the 4277A has wider measurement capabilities in regard to the selectable measurement parameters, frequency, measurement range and accuracy, the performance tests include some critical measuring regions where accuracy is difficult to verify directly by measuring available standards.

Measurement accuracy is tested by measuring standard capacitors, resistors and other reference devices. The standards must have been calibrated and certified by transfer of values of national standards. However, a portion of the measurement range of the 4277A is out of the applicable ranges of the available standards. The method then, is to check accuracies by comparison with references on the specific ranges at which the standards are applicable, and to apply alternative tests for verification of accuracies on the other ranges.

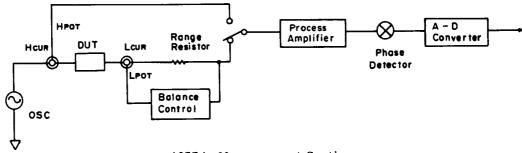
Theoretical Background of Accuracy Checks

The 4277A, in accordance with its measurement principles, determines the vector impedance (or its reciprocal value: admittance) of the unknown device under test. The various measurement data provided, with respect to the 8 selectable measurement parameters (L, C, D, etc.), are arithmetically derived from measured values of the orthogonal vector components (resistance and reactance). For example, the capacitance value of a DUT is calculated by the following equation relative to the capacitance-to-reactance values:

$$Cx = \frac{1}{2\pi f Xm}$$

where, Cx is capacitance value of DUT, f is test frequency,
Xm is measured reactance value of DUT.

As stated above, each measurement parameter is interrelated with the impedance (or admittance) value; consequently, the accuracies on all ranges can be verified if the instrument satisfies specified accuracies for each one of its resistive and reactive measurement parameters; that is, resistance and capacitance from the lowest through the highest test frequencies.


The technician should note that accuracy here is based on arithmetic relationships as are the parameter relationships. Therefore, the accuracy tests can be done by simplified procedures instead of time-consuming tests on the approximately 250000 possible combinations of the fundamental test parameters such as measurement parameter, frequency, and range.

Verification Check Considerations

The measurement accuracy test can be made by using calibrated standards on specific ranges only. On other ranges, which would be uncertifiable because of the limitations of the standards, the test takes the method proven to be theoretically and experimentally practicable for verification of accuracy. If the results of these checks meet all the individual test limits, the instrument should satisfy its specified accuracy across its entire range. How then can these methods be explained? Let us look at the performance test articles.

Accuracy test procedures include checks for the following circuit sections:

- 1) Range Resistors
- 2) Process Amplifier
- 3) Bridge Balance Control
- 4) Phase Detector
- 5) A-D (Analog to Digital) Converter

4277A Measurement Section

CAPACITANCE ACCURACY TEST verifies Range Resistor accuracy for reactive impedance measurements from the lowest through the highest test frequencies. Balance Control linearity and normal operation of the Phase Detector and A-D Converter are also verified.

RESISTANCE ACCURACY TEST is similar to the Capacitance Accuracy test, but for resistive impedance measurements. Thus, accuracy for both reactive and resistive components of the vector impedance is verified.

SELF-OPERATING TEST verifies the accuracy of the Process Amplifier which extends the measurement ranges. The A-D Converter accuracy is also checked by this combined self-test function which enables automatic check of each one of these circuits.

PHASE ACCURACY TEST verifies phase-flatness characteristics (minimum phase shift) of the overall measurement section and Phase Detector phase accuracy from the lowest through the highest test frequencies.

Note

A set of detection phases, each different by 90 degrees, is used in the Phase Detector. If the relative phase difference between the detection phases is exactly 90 degrees, the Phase Detector is operated at the maximum detection accuracy.

The accuracy of the right-angle detection phases is verified by both this test and dissipation factor checks associated with the Capacitance Accuracy Test.

ACCURACY TEST STANDARDS

1) Standard Capacitors

The HP 16380A Series Standard Capacitors, featuring the four terminal pair configuration, are recommended for use as performance test standards. The four standard capacitors, 16381A (lpF), 16382A (l0pF), 16383A (l00pF) and 16384A (l00pF) are calibrated at 0.01% accuracy at lkHz (and have capacitances within 0.1% of their nominal values). For values up to 10MHz, an extrapolation of the calibrated values at lkHz is used. This is based on the careful consideration of their inherent residual parameter values and on the actual test measurement to verify the frequency dependency of the values. Capacitance values at frequencies up to 10MHz are read from the graph given on the data sheet of each standard.

Note

A high capacitance standard, useable in high frequency region, is unavailable. This is because a $10\,\mu\mathrm{F}$ capacitor, for example, has a low impedance value of 0.16Ω at $100k\,\mathrm{Hz}$. A capacitance standard would have, in addition, residual impedance which could not be disregarded when compared to the pure impedance of 0.16Ω . Thus, an attempt to conduct tests which would use the standard capacitor at the higher operating frequency ranges is not practicable.

2) Standard Resistors

The standard resistors used for accuracy checks should be nearly pure resistances and should maintain an extremely low residual reactance at frequencies to 1MHz. The HP 16074A Standard Resistor Set, especially designed as standards useable over a broad frequency region, with thin film resistors and four terminal pair configurations, is suitable for the accuracy checks. Because of low residual inductance and less skin effect of the thin film resistors, the 16074A provides the standard resistance values of 0Ω , 0.1Ω , 1Ω and 10Ω at $\pm 10\%$ and 100Ω , $1k\Omega$, $10k\Omega$ and $100k\Omega$ at $\pm 0.01\%$ calibration accuracies to 10MHz (1MHz at $100k\Omega$). Open (OS) and Short terminations, which facilitate optimum zero offset adjustment, and two quasi-inductors are included in the 16074A.

Note

The 0Ω and 10Ω resistors are used as the (pure resistance) reference device in the Phase Accuracy Test. The 0.1Ω , 1Ω and the quasi-inductors are not used in the 4277A performance tests.

3) Inductance Accuracy Test

The 4277A inductance accuracy is theoretically certified if the capacitance accuracy meets the specifications. Generally, inductors have unwanted parasitic impedances such as coil resistance and distributed capacitance. As these residuals significantly affect the inductance values at high frequencies, inductance standards useable in the RF region above 100kHz are substantially unavailable. Inductors with higher inductance values have lower frequency limits.

GENERAL

The standards should be of four terminal pair configuration design to provide compatibility with the instrument. This minimizes reduction in reliability of the values due to the effects of the residuals associated with cabling and connections.

PERFORMANCE TESTS

4-9. TEST FREQUENCY ACCURACY TEST

4-10. This test verifies that test signal frequencies for the 4277A meet the specified frequency accuracy of 0.01%.

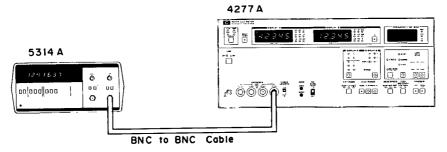


Figure 4-1. Test Frequency Accuracy Test Setup.

EQUIPMENT:

PROCEDURE:

- 1. Connect the frequency counter to the 4277A UNKNOWN Hour terminal as shown in Figure 4-1.
- 2. Set the 4277 A's controls as follows:

TEST SIG LEVEL	HIGH
DC BIAS switch	
Test Frequency	
Other controls	Any setting

- 3. Verify that the frequency reading on the 5314A is 10.000kHz±1Hz.
- 4. Set the test frequency in the sequence given in Table 4-2. Verify that the frequency readings on the 5314A are within the test limits given in the table.

Table 4-2. Test Frequency Accuracy Test

Frequency Setting	Test Limits
10.0kHz	9.999 to 10.001kHz
100kHz	99.99 to 100.01kHz
202kHz	201.98 to 202.02kHz
500kHz	499.95 to 500.05kHz
1.00MHz	0.9999 to 1.0001MHz

Note

- 1) Test limits in the table do not account for tolerance dependent on the specified accuracy of the 5314A.
- 2) If this test fails, the instrument requires troubleshooting.

Model 4277A SECTION IV

PERFORMANCE TESTS

4-11. TEST SIGNAL LEVEL ACCURACY TEST

4-12. This test verifies that test signal level for the 4277A meets the specified level accuracy of 10%.

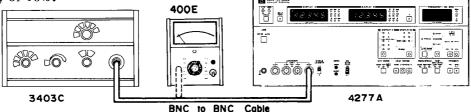


Figure 4-2. Test Signal Level Accuracy Test Setup.

EQUIPMENT:

RF Voltmeter HP 3403C and HP 400E BNC to BNC Cable HP 11170A

Note

Use RF Voltmeter calibrated for frequency response of 10kHz to 1MHz.

PROCEDURE:

- Connect the 3403C to the 4277A UNKNOWN Hour terminal as shown in Figure 4-2.
- 2. Set the RANGE control of the 3403C as appropriate to measure 1Vrms.
- 3. Set the 4277 A's controls as follows:

- 4. The 3403C should read between 0.9V and 1.1Vrms.
- 5. Successively change the test frequency setting to 100kHz and 1MHz. The voltage readings on the 3403C should be within the test limits given in Table 4-3.
- 6. Replace the 3403C with the 400E. Set the TEST SIG LEVEL to LOW.
- 7. Set the test frequency in accordance with Table 4-3. Verify that the voltage readings on the 400E meet the test limits given in the table.

Table 4-3. Test Signal Level Accuracy Test

		1			
Frequency Level	10kHz	10kHz 100kHz 1MHz		Equipment	
High (1Vrms)	0.9 to 1.1Vrms	0.9 to 1.1Vrms	0.9 to 1.1Vrms	НР 3403С	
Low (20mVrms)	17 to 23mVrms	17 to 23mVrms	18 to 22mVrms	HP 400E	

4-13. SELF-OPERATING TEST

4-14. The self-operating test checks operating conditions of the circuits which are critical to maintaining the specified accuracies. To verify that these circuits satisfy the performance requirements for ensuring specified accuracies, the values displayed in the Self Test are compared with test limits. Because basic circuit operating conditions related to accuracy are verified in this test, the instrument should be initially checked with this test.

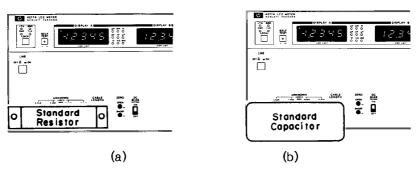


Figure 4-3. Self-Operating Test Setup.

EQUIPMENT:

Standard Capacitors	10pF:	HP 16382A
•	100pF:	HP 16383A
	1000pF:	HP 16384A
Standard Resistor	100Ω:`	1
		HP 16074A Standard
Termination	Open (0S):	Resistor Set

PROCEDURE:

- 1. Connect Open (0S) termination directly to the 4277A UNKNOWN terminals as shown in Figure 4-3 (a).
- 2. Set the 4277A's controls as follows:

TEST SIG LEVEL	HIGH
Test Frequency	10kHz
MEAS SPEED	MED
TRIGGER	INT
DC BIAS switch	OFF
CABLE LENGTH switch	0
Other controls	Any setting

- 3. Press the SELF TEST key and then the FREQUENCY/DC BIAS selector key.
- 4. Press the FREQUENCY/DC BIAS step control ② (or ☑) key several times until self test item number "8" appears in the FREQUENCY/DC BIAS display as shown below:

5. The values displayed on DISPLAY A and DISPLAY B should be within the following test limits:

DISPLAY A: 0.0020 to 0.0048 DISPLAY B: -0.0020 to -0.0048

- 6. Set the test frequency to 100kHz and repeat step 5.
- 7. Set the test frequency to 1MHz and repeat step 5.
- 8. Press the FREQUENCY/DC BIAS step control [1] key to select self test item 9.
- 9. Press the FREQUENCY/DC BIAS selector key and set the 4277A controls as listed in step 2. Leave the SELF TEST function set to on.
- 10. The values displayed on DISPLAY A and DISPLAY B should be within the following test limits:

DISPLAY A: -0.9990 to -1.0010 DISPLAY B: -0.0010 to 0.0010

11. Set the TEST SIG LEVEL and MEAS SPEED in accordance with Table 4-4, and verify that the displayed values are within the test limits given in the table.

	Test Limits					
Measurement Speed	MED		FAST			
Test Signal Level	Display A	Display B	Display A	Display B		
High	-1±0.0010	0±0.0010	-1±0.0050	0±0.0050		
Low	-1±0.0020	0±0.0020	-1±0.0100	0±0.0100		

Table 4-4. Self-operating Test (Item 9)

- 12. Set the test frequency to 100kHz and 1MHz, and repeat steps 10 and 11 for each frequency.
- 13. Press the SELF TEST key to release the self test function, and set the 4277 A's controls as follows:

Test frequency	l M Hz
TEST SIG LEVEL	HIGH
MEAS SPEED	MED
TRIGGER	
DISPLAY A function	C
DISPLAY B function	
C RANGE	
DC BIAS switch	OFF
CABLE LENGTH	
Other controls	

- 14. Set the self test item "3" using the procedure described in steps 3 and 4. The value displayed on the DISPLAY A should be within 0 and -200 counts.
- 15. Disconnect the Open (0S) termination and connect a 10pF standard capacitor directly to the UNKNOWN terminals as shown in Figure 4-3 (b).
- 16. Set the DISPLAY B function to "D" and press the LC | Z | RANGE selector key once to select the 10pF range.

Note

To verify the selected range, temporarily release the self test function and read the measured value and unit indicator. Thereafter, reset the self test function and select the test item "3."

- 17. The value displayed on DISPLAY A should be between 0 and -200 counts.
- 18. Repeat steps 15, 16 and 17 with the 100pF and 1000pF standard capacitors. Set the range (step 16) as listed in Table 4-5.

Table 4-5. Self-Operating Test (Item 3)

Standard Resistor Capacitor	Function	Range	Test Limits (Display A)
Open (OS)	C-G	1pF	0 to -200 counts
10pF	C-D	10pF	0 to -200 counts
100pF	C-D	100pF	0 to -200 counts
1000pF	C-D	1nF	0 to -200 counts

Note

Only self test items 3, 8 and 9 are used in this test.

4-15. OPEN/SHORT TEST

4-16. This test checks that the Zero Offset function is operating correctly.

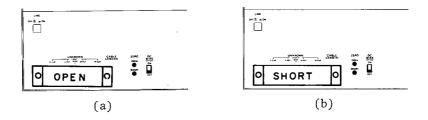


Figure 4-4. Open/Short Test Setups.

EQUIPMENT:

Terminations Open (0S) $\begin{array}{c} \text{HP 16074A} \\ \text{Short} \end{array} \right\} \begin{array}{c} \text{HP 16074A} \\ \text{Standard Resistor} \\ \text{Set} \end{array}$

PROCEDURE:

- 1. Connect Open (0S) termination directly to the 4277A UNKNOWN terminals as shown in Figure 4-4 (a).
- 2. Set the 4277A's controls as follows:

DISPLAY A function	C
DISPLAY B function	ESR/G
Test Frequency	10kHz
C RANGE	
TEST SIG LEVEL	HIGH
CIRCUIT MODE	AUTO
MEAS SPEED	MED
TRIGGER	INT
CABLE LENGTH switch	0
DC BIAS switch	OFF

- 3. Press the ZERO OPEN button to perform "open" offset adjustment and wait approximately 10 seconds. (Offset values are displayed on both DISPLAY A and B.)
- 4. The values displayed on the 4277A should be within the following test limits:

DISPLAY A: 0±0.0008nF DISPLAY B: 0±0.07µs

5. Set the TEST SIG LEVEL and test frequency in accordance with Table 4-6 (a). The values displayed on the 4277A should be within the test limits given in the table.

- 6. Connect Short termination directly to 4277A UNKNOWN terminals as shown in Figure 4-6 (b).
- 7. Press the ZERO SHORT button and wait a few seconds.
- 8. Set the 4277 A's controls as follows:

DISPLAY A function	L
DISPLAY B function	ESR/G
Test Frequency	
L RANGE	
TEST SIG LEVEL	

9. The values displayed on the 4277A should be within the following test limits:

DISPLAY A: 0 ± 0.0009 mH DISPLAY B: $0 \pm 0.05\Omega$

10. Successively set the TEST SIG LEVEL, test frequency and LC \mid Z \mid RANGE in accordance with Table 4-6 (b). The values displayed on the 4277A should be within the test limits given in the table.

Table 4-6 (a). Open/Short Tests (Open)

Test Frequency	TEST SIG L	EVEL HIGH	TEST SIG LEVEL LOW		
	DISPLAY A	DISPLAY B	DISPLAY A	DISPLAY B	
10kHz 20kHz 20.2kHz 50.5kHz 100kHz 200kHz 202kHz 505kHz	0±0.0008nF 0±0.0013nF 0±0.0017nF 0±0.0011nF 0±0.0008nF 0±0.0013nF 0±0.0017nF 0±0.0011nF 0±0.0005nF	$\begin{array}{c} 0 \!\pm\! 0.07 \mu \text{S} \\ 0 \!\pm\! 0.11 \mu \text{S} \\ 0 \!\pm\! 0.0008 \text{mS} \\ 0 \!\pm\! 0.0008 \text{mS} \\ 0 \!\pm\! 0.0007 \text{mS} \\ 0 \!\pm\! 0.0011 \text{mS} \\ 0 \!\pm\! 0.008 \text{mS} \\ 0 \!\pm\! 0.008 \text{mS} \\ 0 \!\pm\! 0.007 \text{mS} \\ \end{array}$	0±0.0016nF 0±0.012nF 0±0.012nF 0±0.011nF 0±0.0016nF 0±0.012nF 0±0.012nF 0±0.011nF 0±0.0010nF	$\begin{array}{c} 0 \pm 0.14 \mu \text{S} \\ 0 \pm 0.22 \mu \text{S} \\ 0 \pm 0.0016 \text{mS} \\ 0 \pm 0.0016 \text{mS} \\ 0 \pm 0.0014 \text{mS} \\ 0 \pm 0.0022 \text{mS} \\ 0 \pm 0.016 \text{mS} \\ 0 \pm 0.016 \text{mS} \\ 0 \pm 0.014 \text{mS} \\ 0 \pm 0.014 \text{mS} \\ \end{array}$	

Table 4-6 (b). Open/Short Tests (Short)

Tach		Test Limits					
Test Frequency	L RANGE	TEST SIG L	EVEL HIGH	TEST SIG I	EVEL LOW		
		DISPLAY A	DISPLAY B	DISPLAY A	DISPLAY B		
10kHz 20kHz 20.2kHz 50.5kHz 100kHz 200kHz 202kHz 505kHz	1mH 100µH 100µH 100µH 100µH 10µH 10µH 10µH	0±0.0009mH 0±0.6μH 0±0.13μH 0±0.11μH 0±0.09μH 0±0.06μH 0±0.013μH 0±0.011μH 0±0.009μH	$\begin{array}{c} 0\pm 0.05\Omega \\ 0\pm 0.08\Omega \\ 0\pm 0.08\Omega \\ 0\pm 0.08\Omega \\ 0\pm 0.05\Omega \\ 0\pm 0.08\Omega \end{array}$	0±0.0018mH 0±1.2μH 0±1.2μH 0±1.1μH 0±0.18μH 0±0.12μH 0±0.12μH 0±0.11μH 0±0.018μH	$\begin{array}{c} 0 \pm 0.10\Omega \\ 0 \pm 0.16\Omega \\ 0 \pm 0.10\Omega \\ \end{array}$		

Model 4277 A SECTION IV

PERFORMANCE TESTS

4.17. CAPACITANCE ACCURACY TEST

4-18. This test checks capacitance measurement accuracy for various combinations of test signal frequency, test signal level and cable length. The capacitance accuracy checks are made by connecting a standard capacitor to the instrument and comparing measurement results with the calibrated values of the standard. Accuracies for dissipation factors near zero are also checked in this test.

Capacitance accuracy check ranges (cable length = 0m)

Freq.	10kHz	20kHz	20.2kHz	50.5kHz	100kHz	200kHz	202kHz	500kHz	1MHz
1pF	> <	><	>>	><	><	><			
10pF	><	> <							
100pF									
1000pF									

____ Tested range

Non-applicable range for recommended capacitance standard

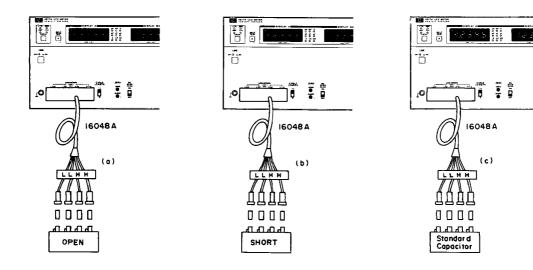


Figure 4-5. Capacitance Accuracy Test Setups (CABLE LENGTH: 1m).

EQUIPMENT:

Standard Capacitors	lpF: HP 16381A
	10pF: HP 16382A
	100pF: HP 16383A
	1000pF: HP 16384A
Terminations	OPEN (0S) HP 16074A Short Standard Resistor Set
Test leads with BNC connector	HP 16048A
BNC (f)-(f) adapter	HP P/N 1250-0080 4 ea.

Note

- 1) Use the BNC (f)-(f) adapters furnished with the HP 16380A standard capacitor set.
- 2) If the 16048A Test Leads are not available, use the 1m Test Leads (HP P/N 16074-61600) furnished with the HP 16074A standard resistor set.

PROCEDURE:

1. Set the 4277 A's controls as follows:

DISPLAY A function C
DISPLAY B function D
CIRCUIT MODE AUTO
LC Z RANGE
MEAS SPEEDMED
TRIGGER INT
DC BIAS switch OFF
CABLE LENGTH switch 0
Other controls Any setting

Note

If Open/Short Test (paragraph 4-15) has not been performed before doing this test, perform zero offset adjustment as described in steps 1, 3, 6 and 7 of paragraph 4-15.

- 2. Connect a lpF standard capacitor directly to the UNKNOWN terminals as shown in Figure 4-3 (b).
- 3. Set the test frequency and TEST SIG LEVEL in accordance with Table 4-7 (a). Capacitance and dissipation factor readings should be within the test limits given in the table.
- 4. Change the standard capacitor to 10pF, 100pF and 1000pF in that order and verify that the capacitance readings are within the test limits given in Table 4-7 (a).
- 5. Set the CABLE LENGTH switch to 1m.
- 6. Disconnect the standard capacitor and connect the 16048A Test Leads to the UNKNOWN terminals. Connect Open termination as shown in Figure 4-5 (a). Use the BNC (f)-(f) adapters to permit connection of the termination. Press ZERO OPEN button to perform "open" offset adjustment.
- 7. Disconnect Open termination and connect Short termination as shown in Figure 4-5 (b). Press the ZERO SHORT button to perform "short" offset adjustment.
- 8. Disconnect Short termination and connect a 1pF standard capacitor as shown in Figure 4-5 (c).
- 9. Set the test frequency to 1MHz and set the TEST SIG LEVEL in accordance with Table 4-7 (b). Capacitance and dissipation factor readings should be within the test limits given in the table.

Model 4277 A SECTION IV

PERFORMANCE TESTS

10. Change the standard capacitor to 10pF, 100pF and 1000pF in that order, and verify that the capacitance and dissipation factor readings are within the test limits given in Table 4-7 (b).

Table 4-7 (a). Capacitance Accuracy Tests (CABLE LENGTH = 0)

	Standard Capacitance lpF					
Test Frequency	TEST SIG	LEVEL HIGH TEST SIG		TEST SIG LEVEL HIGH TEST SIG LEVEL LOW		LEVEL LOW
rrequency	C Test Limits	D Test Limits	C Test Limits	D Test Limits		
202kHz	C.V.±0.0052pF	0±0.009	C.V.±0.21pF	0±1.0		
505kHz	C.V.±0.0046pF	0±0.0040	C.V.±0.21pF	0±0.11		
1MHz	C.V.±0.0043pF	0±0.0040	C.V.±0.027pF	0±0.017		

C.V. = Calibrated Value of Standard Capacitor

Table 4-7 (a). Capacitance Accuracy Tests (CABLE LENGTH = 0, continued)

	Standard Capacitance 10pF				
Test Frequency	TEST SIG LEVEL HIGH		TEST SIG LEVEL LOW		
Trequency	C Test Limits	D Test Limits	C Test Limits	D Test Limits	
20.2kHz 50.5kHz 100kHz 200kHz 202kHz 505kHz 1MHz	C.V.±0.052pF C.V.±0.046pF C.V.±0.043pF C.V.±0.048pF C.V.±0.027pF C.V.±0.021pF C.V.±0.015pF	0±0.009 0±0.0040 0±0.0040 0±0.0040 0±0.008 0±0.0022 0±0.0016	C.V.±2.1pF C.V.±2.1pF C.V.±0.27pF C.V.±2.1pF C.V.±0.14pF C.V.±0.13pF C.V.±0.020pF	0±1.0 0±0.11 0±0.017 0±0.11 0±0.11 0±0.013 0±0.0032	

C.V. = Calibrated Value of Standard Capacitor

Table 4-7 (a). Capacitance Accuracy Tests (CABLE LENGTH = 0, continued)

	Standard Capacitance 100pF				
Test Frequency	TEST SIG LEVEL HIGH		TEST SIG LEVEL LOW		
1204	C Test Limits	D Test Limits	C Test Limits	D Test Limits	
10kHz	C.V.±0.43pF	0±0.0040	C.V.±2.7pF	0±0.017	
20kHz	C.V.±0.48pF	0±0.0040	C.V.±20pF	0±0.11	
20.2kHz	C.V.±0.27pF	0±0.079	C.V.±1.4pF	0±0.10	
50.5kHz	C.V.±0.21pF	0±0.0022	C.V.±1.3pF	0±0.013	
100kHz	C.V.±0.18pF	0±0.0016	C.V.±0.36pF	0±0.0032	
200kHz	C.V.±0.23pF	0±0.0026	C.V.±1.3pF	0±0.014	
202kHz	C.V.±0.27pF	0±0.008	C.V.±1.4pF	0±0.11	
505kHz	C.V.±0.21pF	0±0.0022	C.V.±1.3pF	0±0.013	
1MHz	C.V.±0.15pF	0±0.0016	C.V.±0.20pF	0±0.0032	

C.V. = Calibrated Value of Standard Capacitor

SECTION IV Model 4277A

PERFORMANCE TESTS

Table 4-7 (a). Capacitance Accuracy Tests (CABLE LENGTH = 0, continued)

	Standard Capacitance 1000pF				
Test Frequency	TEST SIG LEVEL HIGH		TEST SIG LEVEL LOW		
	C Test Limits	D Test Limits	C Test Limits	D Test Limits	
10kHz 20kHz 20.2kHz 50.5kHz 100kHz 200kHz 202kHz 505kHz	C.V.±0.0018nF C.V.±0.0023nF C.V.±0.0027nF C.V.±0.0021nF C.V.±0.0018nF C.V.±0.0023nF C.V.±0.0027nF C.V±0.0021nF C.V.±0.0015nF	0±0.0016 0±0.0026 0±0.008 0±0.0022 0±0.0016 0±0.0026 0±0.008 0±0.0022 0±0.0016	C.V.±0.0036nF C.V.±0.014nF C.V.±0.014nF C.V.±0.013nF C.V.±0.0036nF C.V.±0.014nF C.V.±0.014nF C.V.±0.013nF C.V.±0.013nF	0±0.0032 0±0.014 0±0.11 0±0.013 0±0.0032 0±0.014 0±0.11 0±0.013 0±0.0032	

C.V. = Calibrated Value of Standard Capacitor

Table 4-7 (b). Capacitance Accuracy Tests
(CABLE LENGTH = 1m, test frequency = 1MHz)

	Standard	TEST SIG LEVEL HIGH		TEST SIG LEVEL LOW	
١	Capacitor	C Test Limits	D Test Limits	C Test Limits	D Test Limits
	1pF 10pF 100pF 1000pF	C.V.±0.0083pF C.V.±0.020pF C.V.±0.18pF C.V.±0.0021nF	0±0.0050 0±0.0019 0±0.0018 0±0.0019	C.V.±0.035pF C.V.±0.030pF C.V.±0.26pF C.V.±0.0032nF	0±0.019 0±0.0038 0±0.0036 0±0.0038

C.V. = Calibrated Value of Standard Capacitor

4-19. RESISTANCE ACCURACY TEST

4-20. This test checks resistance measurement accuracy for various combinations of test signal frequency and test signal level. The resistance accuracy checks are made by connecting a standard resistor to the instrument and comparing the measurement results with the calibrated values of the standard.

EQUIPMENT:

Standard Resistors	100Ω`)
	1 k Ω	
	$10 \mathrm{k}\Omega$	HP 16074A
	100 k Ω	Standard Resistor
Terminations OPE	N (0S)	Set
	Short	J

PROCEDURE:

1. Set the 4277 A's controls as follows:

DISPLAY A and B function	Z - θ
CIRCUIT MODE	AUTO
LC Z RANGE	AUTO
MEAS SPEED	
TRIGGER	INT
DC BIAS switch	OFF
CABLE LENGTH switch	0
Other controls	Any setting

- 2. Perform Open and Short zero offset adjustments as described in steps 1, 3, 6 and 7 of paragraph 4-15.
- 3. Connect the 100Ω standard resistor directly to the UNKNOWN terminals as shown in Figure 4-3 (a).
- 4. Set test frequency and TEST SIG LEVEL in accordance with Table 4-8. Absolute values of the impedance readings should be within the test limits given in the table.
- 5. Change the standard resistor to $1k\Omega$, $10k\Omega$ and $100k\Omega$ in that order, and verify that the impedance readings are within the test limits given in Table 4-8.

Table 4-8. Resistance Accuracy Tests

	Test Limits				
Standard Resistor	100Ω		1k	Ω	
LEVEL FREQ.	HIGH	LOW	HIGH	LOW	
10kHz 20kHz 50.5kHz 100kHz 200kHz 505kHz 1MHz	$\begin{array}{c} \text{C.V.} \pm 0.15\Omega \\ \text{C.V.} \pm 0.15\Omega \end{array}$	$\begin{array}{c} \text{C.V.} \!\pm\! 1.2\Omega \\ \text{C.V.} \!\pm\! 1.2\Omega \\ \text{C.V.} \!\pm\! 1.2\Omega \\ \text{C.V.} \!\pm\! 0.30\Omega \end{array}$	$\begin{array}{c} \text{C.V.} \!\pm\! 0.006 k\Omega \\ \text{C.V.} \!\pm\! 0.006 k\Omega \end{array}$	$\begin{array}{c} \text{C.V.} \!\pm\! 0.012 \text{k}\Omega \\ \text{C.V.} \!\pm\! 0.012 \text{k}\Omega \end{array}$	

C.V. = Calibrated Value of Standard Resistor

Table 4-8. Resistance Accuracy Tests (continued)

	Test Limits				
Standard Resistor	10kΩ		100	kΩ	
LEVEL FREQ.	HIGH	LOW	HIGH	LOW	
10kHz 20kHz 50.5kHz 100kHz 200kHz 505kHz 1MHz	C.V.±0.06kΩ C.V.±0.06kΩ C.V.±0.06kΩ C.V.±0.06kΩ C.V.±0.06kΩ C.V.±0.06kΩ C.V.±0.06kΩ	$\begin{array}{c} \text{C.V.} \!$	C.V.±0.6kΩ C.V.±0.6kΩ C.V.±0.6kΩ C.V.±0.6kΩ	$\begin{array}{c} \text{C.V.} \pm 1.2 \text{k}\Omega \\ \\ \hline$	

C.V. = Calibrated Value of Standard Resistor

4-21. PHASE ACCURACY TEST

4-22. This test checks to the accuracy of phase measurements over the full frequency range. The phase accuracy test is made by connecting a resistor with extremely low reactive elements and by reading the displayed phase angle (almost zero) to verify that the impedance vector (phase angle) of the DUT has been accurately detected.

EQUIPMENT:

Standard Res	istors	***************************************	10Ω	HP 16074A
				Standard Resistor
Termination	•••••	OPEN	(0S)	Set

Note

The resistors used as references in this test have been designed to maintain an extremely low (residual) reactance at frequencies up to 1MHz. The 0Ω termination has been specially designed for use with the 0.1Ω , 1Ω , and 10Ω standard resistors and provides an optimum termination impedance for the "short" offset adjustment to be made before performing tests with these standards.

PROCEDURE:

1. Set the 4277 A's controls as follows:

DISPLAY A function	Z
CIRCUIT MODE	AUTO
LC Z RANGE	AUTO
MEAS SPEED	MED
TRIGGER	INT
CABLE LENGTH switch	0
DC BIAS switch	OFF
Other controls	Any setting

2. Perform OPEN and SHORT zero offset Adjustment as described in steps 1, 3, 6 and 7 of paragraph 4-15.

Note

Be sure to use the OPEN and 0Ω termination of the 16074A for zero offset Adjustment. DO NOT use the Short termination.

- 3. Disconnect the 0Ω termination and connect the 10Ω standard Resistor directly to the UNKNOWN terminals.
- 4. Set the test frequency and TEST SIG LEVEL in accordance with Table 4-9. Phase angle readings should be within the test limits given in the table.

Table 4-9. Phase Accuracy Tests

The Care Sugar Str	Phase (DISPLAY B) Test Limits		
Test Frequency	TEST SIG LEVEL HIGH	TEST SIG LEVEL LOW	
10kHz 20kHz 50.5kHz 100kHz 200kHz 505kHz 1MHz	0±0.52 deg. 0±0.52 deg. 0±0.52 deg. 0±0.52 deg. 0±0.52 deg. 0±0.52 deg. 0±0.52 deg.	0±1.4 deg. 0±1.4 deg. 0±1.4 deg. 0±1.4 deg. 0±1.4 deg. 0±1.4 deg. 0±1.4 deg.	

4-23. INT DC BIAS VOLTAGE ACCURACY TEST (OPTION 001)

4-24. This test verifies that Option 001 Internal DC BIAS Supply applies the specified bias voltages to the device under test.

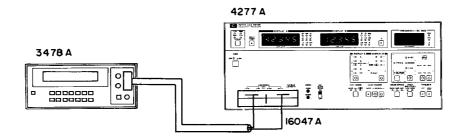


Figure 4-6. Option 001 INT DC Bias Accuracy Test Setup.

EQUIPMENT:

DC Voltmeter HP 3478A Test Fixture HP 16047A

PROCEDUE:

1. Interconnect the 4277A, 16047A, and 3478A as shown in Figure 4-6.

Note

Do not connect a DUT to the 16047A.

CAUTION

BEFORE OPERATING DC BIAS SWITCH, VERIFY THAT DC BIAS VOLTAGE IS SET TO ZERO VOLTS.

2. Set the 4277A's controls as follows:

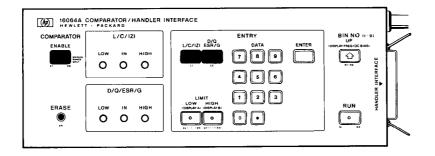
3. Set the dc bias voltage in accordance with Table 4-10. The voltage readings on the 3478A should be within the test limits given in the table.

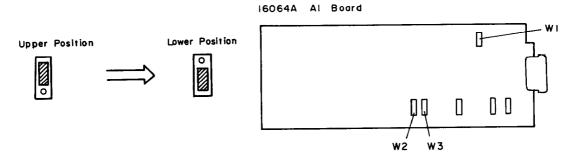
Table 4-10. INT DC Bias Voltage Test Limits

	<u> </u>
DC Bias Setting	Test Limits
-0.01V	0.1mV to -20.1mV
6.82V	6.7895V to 6.8505V
-9.99V	-9.8801V to -10.0999V
10V	9.915V to 10.085V
-12.7V	-12.538V to -12.862V
40V	39.765V to 40.235V
-40V	-39.565V to -40.435V

4-25. 16064A COMPARATOR/HANDLER INTERFACE TEST (OPTION 002)

4-26. This test verifies the functions of the 16064A Comparator/Handler Interface.




Figure 4-7. 16064A Comparator/Handler Interface.

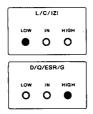
EQUIPMENT:

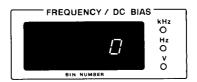
Digital Multimeter	ΗP	3478A
100kΩ Standard resistor	HP	16074A
1000pF Standard capacitor		

PROCEDURE:

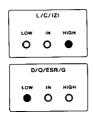
1. Set jumpers Al W1/W2/W3 in the 16064A to the lower position as shown below:

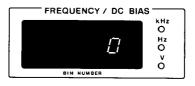
- 2. Connect the 16064A to the COMPARATOR/HANDLER INTERFACE connector on the rear panel of the 4277A.
- 3. Turn on the 4277A. "16064" should be displayed on DISPLAY B.
- 4. Set the 4277 A's controls as follows:


DISPLAY A/B functions	C-G
Test Frequency	1.00kHz
DC BIAS	
CKT MODE	~ □
LC Z RANGE	lnF
MEAS SPEED	
TEST SIG LEVEL	
TRIGGER	INT


5. Set the 3478A's controls as follows:

- 6. Connect the 3478A's LO input to the 4277A's GUARD terminal.
- 7. Press the 16064A's ERASE key and set the following comparator limits:


L/C/|Z| LOW LIMIT (BIN1): .3 L/C/|Z| HIGH LIMIT (BIN1): .9 D/Q/ESR/G LOW LIMIT: 2 D/Q/ESR/G HIGH LIMIT: 8

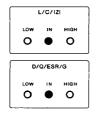

- 8. Connect the $100k\Omega$ standard resistor to the 4277 A's UNKNOWN terminals.
- 9. Press the RUN key on the 16064A's control panel.
- 10. Verify that the L/C/|Z| LOW and D/Q/ESR/G HIGH lamps light, and "0" is displayed on the 4277A's FREQUENCY/DC BIAS DISPLAY.

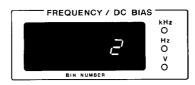
- 11. Check the states of the comparison data output (TTL) at the HANDLER INTERFACE connector using the 3478A. The pin assignments and the data states are shown in Figure 4-8 and Table 4-11.
- 12. Disconnect the $100k\Omega$ resistor and connect a 1000pF standard capacitor.
- 13. Verify that the L/C/|Z| HIGH and D/Q/ESR/G LOW lamps light, and "0" is displayed on the 4277A's FREQUENCY/DC BIAS DISPLAY.

- 14. Check the comparison data output at the HANDLER INTERFACE connector by comparing it with the Data States shown in Table 4-11.
- 15. Press the ERASE key and set the following comparator limits:

L/C/|Z| HIGH LIMIT

BIN1: .9


BIN2: 1.1


BIN3: 1.9999

D/Q/ESR/G HIGH LIMIT:

.1

- 16. Press the RUN key on the 16064A's control panel.
- 17. Verify that the L/C/|Z| IN and D/Q/ESR/G IN lamps light, and "2" is displayed on the 4277A's FREQUENCY/DC BIAS DISPLAY.

18. Check the comparison data output at the HANDLER INTERFACE connector by comparing it with the Data States shown in Table 4-11.

Table 4-11. Handler Interface Output Data States

TEST	Connector Pin Numbers			
STEP	1 2 3 4 5 6 7 8 9 10	19 20 21 22 23 24		
10	нннннннг	H H L L H H		
13	ннининни г	LHHHHL		
17	нгниннин н	HLHHLH		

H: Approximately 5VL: Approximately 0V

Figure 4-8. Handler Interface Connector Pin Assignments.

4-27. HP-IB INTERFACE TEST

4-28. This test verifies the instrument's HP-IB capabilities.

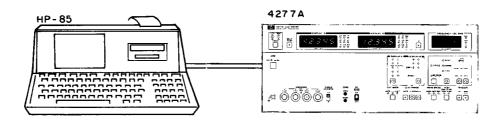


Figure 4-9. HP-IB Interface Test Setup.

EQUIPMENT:

Personal Computer	HP-85
I/O ROM	
ROM Drawer	HP 82936A
HP-IB Interface	
100pF Standard	

PROCEDURE:

- 1. Turn off the 4277A and the HP-85 off.
- 2. Connect the 82937A HP-IB Interface between the HP-85 and the 4277A as shown in Figure 4-9, and install the I/O ROM in the ROM Drawer of the HP-85.
- 3. Set the 4277A's HP-IB Control Switch, located on the rear panel, as follows:

bits 5-1 : 10001 (17₁₀) bit 6 : 0 bit 7 : 0

- 4. Turn on the 4277A and the HP-85.
- 5. Load one of the three test programs into the personal computer. Test programs are listed on pages 4-26, and 4-28 and 4-30.
- 6. Execute the program and follow the prompts and instructions that are output by the HP-85. Details on the controller's (personal computer) instructions and the appropriate operator response are given in Tables 4-12 through 4-14.

TEST PROGRAM 1

PURPOSE:

This test verifies that the 4277A has the following HP-IB capabilities:

- (1) Remote/Local Capability
- (2) Local Lockout
- (3) Talk Disable
- (4) Listen Disable

PROGRAM LISTING:

```
10 ! 4277A HP-IB TEST No.1
20 ! REMOTE/LOCAL TEST
30 DIM A$[1]
40 N=Q @ M=7 @ M1=717
50 S=SPOLL(M1)
60 CLEAR
70 PRINT "*** 4277A HP-IB TEST No.1 ***"
80 DISP "REMOTE/LOCAL TEST"
90 REMOTE M
100 OUTPUT M1 ;"T1"
110 DISP "LISTEN=1, TALK=0, REMOTE=1"
120 GOSUB 580
130 ABORTIO M
140 DISP "LISTEN=O, TALK=O, REMOTE=1"
150 GOSUB 580
160 LOCAL M
170 DISP "LISTEN=0, TALK=0, REMOTE=0"
180 GOSUB 580
190 REMOTE M1
200 DISP "LISTEN=1, TALK=0, REMOTE=1"
210 GOSUB 580
220 LOCAL LOCKOUT M
230 DISP "PRESS LOCAL KEY"
240 DISP "LISTEN=1, TALK=0, REMOTE=1"
250 GOSUB 580
260 LOCAL M1
270 DISP "LISTEN=1,TALK=0,REMOTE=0"
280 GOSUB 580
290 REMOTE M1
290 REMOTE MT 300 OUTPUT MT ;"T1"
310 DISP "LISTEN=1,TALK=0,REMOTE=1"
320 GOSUB 580
330 IF N=1 THEN 340 ELSE 370
340 PRINT "REMOTE/LOCAL TEST FAIL"
350 DISP "REMOTE/LOCAL TEST FAIL"
350 GOTO 390
370 PRINT "REMOTE/LOCAL TEST PASS"
380 DISP "REMOTE/LOCAL TEST PASS"
390 N=0
400 DISP "LISTEN/TALK TEST"
410 ENTER M1 ; A
420 DISP "LISTEN=0, TALK=1, REMOTE=1"
430 GOSUB 580
440 OUTPUT M1 ;"T1"
450 DISP "LISTEN=1,TALK=0,REMOTE=1"
460 GOSUB 580
470 IF N=1 THEN 480 ELSE 510
480 PRINT "LISTEN/TALK TEST FAIL"
490 DISP "LISTEN/TALK TEST FAIL"
500 G0T0 530
510 PRINT "LISTEN/TALK TEST PASS"
520 DISP "LISTEN/TALK TEST PASS"
530 PRINT "END"
540 DISP "END"
550 CLEAR M
560 LOCAL M
570 END
580 INPUT A$
590 IF A$="N" THEN N=1
600 RETURN
```

Table 4-12. Controller Instructions and Operator Responses for Test Program \boldsymbol{l}

Controller	Operator Response	
Displays	Printout	
	*** 4277A HP-IB TEST NO.1 ***	
REMOTE/LOCAL TEST		
LISTEN=1*, TALK=0, REMOTE=1 LISTEN=0, TALK=0, REMOTE=1 LISTEN=0, TALK=0, REMOTE=0 LISTEN=1, TALK=0, REMOTE=1		If the 4277A HP-IB Status Indicators and Controller Display are the same, press Y, and END LINE. If not, press N, and END LINE.
PRESS LOCAL KEY		Press Local Key.
LISTEN=1, TALK=0, REMOTE=1 LISTEN=1, TALK=0, REMOTE= LISTEN=1, TALK=0, REMOTE=1		If the 4277A HP-IB Status Indicators and Controller Display are the same, press Y, and END LINE. If not, press N, and END LINE.
REMOTE/LOCAL TEST PASS	REMOTE/LOCAL TEST PASS	If all steps are correct, this message is output.
REMOTE/LOCAL TEST FAIL	REMOTE/LOCAL TEST FAIL	If any step fails, this message is output.
LISTEN/TALK TEST		
LISTEN=0, TALK=1, REMOTE=1 LISTEN=1, TALK=0, REMOTE=1		If the 4277A HP-IB Status Indicators and Controller Display are the same, press Y, and (END LINE). If not, press N, and (END LINE).
LISTEN/TALK TEST PASS	LISTEN/TALK TEST PASS	If both steps are correct, this message is output.
LISTEN/TALK TEST FAIL	LISTEN/TALK TEST FAIL	If any step fails, this message is output.
END	END	

^{*1} indicates ON; 0 indicates OFF.

TEST PROGRAM 2

PURPOSE:

This test verifies that the 4277A has the following HP-IB capabilities:

- (1) Talker
- (2) Device Trigger

PROGRAM LISTING:

```
10 ! 4277A HP-IB TEST No.2
20 ! TALKER TEST
30 DIM A$[100],B$[1]
40 M=7 @ M1=717
50 S-SPOLL(M1)
60 PRINT "*** 4277A HP-IB TEST No.2 ***"
70 CLEAR
80 DISP "TALKER TEST"
90 DISP "CONNECT 100pF"
100 BEEP
110 PRUSE
120 DISP "DATA OUTPUT TEST"
 130 REMOTE M
 140 ABORTIO M
 150 CLEAR M1
160 DUTPUT M1 ;"A2B1F1T2"
170 DISP "TEST FREQUENCY IN kHz ";
180 INPUT F
190 DUTPUT M1 ;"FR",F,"EN"
200 TRIGGER M1
210 ENTER M1; A,B
220 DISP A*1.E12;"pF",B
230 DISP "IS OUTPUT DATA CORRECT (Y or N) ";
240 INPUT B$
240 INPUT B$
250 IF B$="N" THEN 260 ELSE 290
260 PRINT "DATA OUTPUT TEST FAIL"
270 DISP "DATA OUTPUT TEST FAIL"
280 GOTO 310
290 PRINT "DATA OUTPUT TEST PASS"
300 DISP "DATA OUTPUT TEST PASS"
310 DISP "COMPLETE DATA OUTPUT TEST"
320 TRIGGER M1
330 ENTER M1 ; A$
340 DISP A$
350 DISP "IS OUTPUT DATA CORRECT (Y or N) ";
 360 INPUT B$
370 IF B$="N" THEN 380 ELSE 410
380 PRINT "COMPLETE DATA OUTPUT TEST FAIL"
390 DISP "COMPLETE DATA OUTPUT TEST FAIL"
400 GOTO 430
410 PRINT "COMLPETE DATA OUTPUT TEST PASS"
420 DISP "COMPLETE DATA OUTPUT TEST PASS"
430 PRINT "END"
440 DISP "END"
450 CLEAR M
460 LOCAL M
470 END
```

Table 4-13. Controller Instructions and Operator Responses for Test Program 2

Controller Instr	Operator Responses		
Displays	Printout	operator nesponses	
	*** 4277A HP-IB TEST No.2 ***		
TALKER TEST			
CONNECT 100pF		Connect the 16383A (100pF Standard) to the UNKNOWN terminals.	
DATA OUTPUT TEST TEST FREQUENCY IN kHz ?		Key in desired test frequency value, from 10 to 1000, and press END LINE.	
[Capacitance] [Dissipation Factor] IS OUTPUT DATA CORRECT (Y or N) ?		If the output data is the same as the values displayed on each 4277A display, press Y and END LINE . If not, press N and END LINE .	
	DATA OUTPUT TEST PASS	DATA OUTPUT TEST result	
	DATA OUTPUT TEST FAIL		
COMPLETE DATA OUTPUT TEST			
PNC[Capacitance],ND[Dissipation Factor] IS OUTPUT DATA CORRECT (Y or N) ?		If the output data is the same as the left values, press 😯 and END LINE . If not, press N and END LINE .	
	COMPLETE DATA OUTPUT TEST PASS	COMPLETE DATA OUTPUT	
	COMPLETE DATA OUTPUT TEST FAIL	TEST result.	
	END		

TEST PROGRAM 3

PURPOSE:

This test program verifies that the 4277A has the following HP-IB capabilities:

- (1) Service Request
- (2) Serial Poll

PROGRAM LISTING:

```
10 ! 4277A HP-IB TEST No.3
20 ! SRQ TEST
30 S-0 @ M-7 @ M1-717
40 ON INTR 7 GOSUB 560
50 CLEAR
60 PRINT "*** 4277A HP-IB TEST No.3 ***"
70 PRINT "SRQ TEST"
80 DISP "SRQ TEST"
90 REMOTE M
100 ABORTIO M
110 CLEAR M1
120 DISP "DATA READY SRQ TEST"
130 OUTPUT M1 ;"D1T2"
140 TRIGGER MI
150 GOSUB 480
160 PRINT "DATA READY
                                   SRQ TEST PASS"
170 S=0
180 DISP "SYNTAX ERROR SRQ TEST"
190 OUTPUT M1 ;"DOASDA"
200 GOSUB 480
210 PRINT "SYNTAX ERROR SRQ TEST PASS"
220 5=0
230 DISP "SELF TEST END SRQ TEST"
240 OUTPUT M1 ;"S1"
250 DISP "SELF TEST in progress"
260 GOSUB 480
270 IF BIT(5,2)=0 THEN GOSUB 480
280 OUTPUT M1 ;"SO"
290 PRINT "SELF TEST END SEG TEST PASS"
300 5=0
310 DISP "TRIGGER TOO FAST SRG TEST"
320 DISP "MOMENTARILY GROUND"

330 DISP " EXT TRG CONN
                         EXT TRG CONNECTOR"
340 GOSUB 510
350 GOSUB 480
360 PRINT "TRG TOO FAST SRQ TEST PASS"
370 S=0
380 DISP "OPERATIONAL ERROR SRQ TEST"
390 OUTPUT M1 ;"N1N2"
400 GOSUB 480
410 PRINT "OPERATIONAL ERROR SRQ TEST PASS"
420 PRINT "SRQ TEST END"
430 CLEAR M1
440 ABORTIO M
450 LOCAL M
460 DISP "END"
470 END
480 ENABLE INTR 7;8
490 IF S>0 THEN DISP S @ RETURN
500 GOTO 480
510 OUTPUT M1 ;"F1T2DA"
520 TRIGGER M1
530 ENTER M1 ; A,B
540 IF S=0 THEN 510
550 RETURN
560 S=SPOLL(MI) @ STATUS 7,1 ; Z
570 IF BIT(S,6)=1 THEN 590
580 DISP "OTHER DEVICE SRO"
590 ENABLE INTR 7;8
600 RETURN
```

Table 4-14. Controller Instructions and Operator Responses for Test Program 3

Controller Insti	Operator Response	
Displays	Printout	
	*** 4277A HP-IB TEST No.3 ***	
SRQ TEST	SRQ TEST	
DATA READY SRQ TEST 65	DATA READY SRQ TEST PASS	SRQ Status Byte data should be 65 [=01000001].
SYNTAX ERROR SRQ TEST 66	SYNTAX ERROR SRQ TEST PASS	SRQ Status Byte data should be 66 [=01000010].
SELF TEST END SRQ TEST SELF TEST in progress 68	SELF TEST END SRQ TEST PASS	SRQ Status Byte data should be 68 [=01000100]. If the instrument fails SELF TEST, it should be 84 [=01010100].
TRIGGER TOO FAST SRQ TEST MOMENTARILY GROUND EXT TRG CONNECTOR 72*1	TRG TOO FAST SRQ TEST PASS	Ground EXT TRG Connector on rear panel momentarily. SRQ Status Byte data should be 72 [=01001000].
OPERATIONAL ERROR SRQ TEST 80*2	OPERATIONAL ERROR SRQ TEST PASS	SRQ Status Byte data should be 80 [=01010000].
	SRQ TEST END	

 $[\]star_1\colon$ SRQ Status Byte data may be 73 [=01001001] due to the timing of connecting the EXT TRG pin to ground.

 $[\]mbox{\scriptsize \star_2:}~$ SRQ Status Byte data may be 81 [=01010001] due to the timing of connecting the EXT TRG pin to ground.

Hewlett-Packard	
Model 4277A LCZ METER	Tested by
Serial Number	Date

Paragraph	TEST		Results		
Number	1.	E31	Minimum	Actual	Maximum
4-9	TEST FREQUENCY				
	Frequency sett	10.0kHz 100kHz 202kHz 500kHz 1.00MHz	9.999kHz 99.99kHz 201.98kHz 499.95kHz 0.9999MHz		10.001kHz 100.01kHz 202.02kHz 500.05kHz 1.0001MHz
4-11		EL ACCURACY TEST			
ı	Test Signal Le	vel: HIGH 10kHz 100kHz 1MHz	Vrms 0.9 0.9 0.9		Vrms 1.1 1.1 1.1
	Test Signal Le	vel: LOW 10kHz 100kHz 1MHz	mVrms 17 17 18		mVrms 23 23 22
4-13	SELF-OPERATING	ГЕST			
!	SELF TEST #8 Frequency				
	10kHz	DISPLAY A DISPLAY B	0.0020 -0.0048		0.0048 -0.0020
	100kHz	DISPLAY A DISPLAY B	0.0020 -0.0048		0.0048 -0.0020
	1MHz	DISPLAY A DISPLAY B	0.0020 -0.0048		0.0048 -0.0020

Paragraph			Results			
Number	TEST		Minimum	Actual	Maximum	
4-13	SELF-OPERATING TEST (Cont'd)				
:	SELF TEST #9					
	Frequency: 10kHz					
	Measurement Speed	: MED				
	Test Signal Level	:				
		SPLAY A SPLAY B	-1.0010 -0.0010		-0.9990 0.0010	
		SPLAY A SPLAY B	-1.0020 -0.0020		-0.9980 0.0020	
	Measurement Speed	: FAST				
	Test Signal Level	:				
		SPLAY A SPLAY B	-1.0050 -0.0050		-0.9950 0.0050	
		SPLAY A SPLAY B	-1.0100 -0.0100		-0.9900 0.0100	
	Frequency: 100kHz					
i	Measurement Speed	: MED				
	Test Signal Level	:				
		SPLAY A SPLAY B	-1.0010 -0.0010		-0.9990 0.0010	
		SPLAY A SPLAY B	-1.0020 -0.0020		-0.9980 0.0020	
	Measurement Speed	: FAST				
	Test Signal Level	:				
		SPLAY A SPLAY B	-1.0050 -0.0050		-0.9950 0.0050	
		SPLAY A SPLAY B	-1.0100 -0.0100		-0.9900 0.0100	

SELF-OPERATING TE	ST	Minimum	Actual	
SELF-OPERATING TE			Actual	Maximum
	ST (Cont'd)			
Frequency: 1MHz				
Measurement S	peed: MED			
Test Signal I	evel:			
HIGH	DISPLAY A DISPLAY B	-1.0010 -0.0010		-0.9990 0.0010
LOW	DISPLAY A DISPLAY B	-1.0020 -0.0020		-0.9980 0.0020
Measurement S	peed: FAST			
Test Signal L	evel:			
HIGH	DISPLAY A DISPLAY B	-1.0050 -0.0050		- 0.9950 0.0050
LOW	DISPLAY A DISPLAY B	-1.0100 -0.0100		-0.9900 0.0100
SELF TEST #3				
Standard	Open (OS) 10pF 100pF 1000pF	-200 counts -200 counts -200 counts -200 counts		0 0 0 0
OPEN, SHORT TEST				
[OPEN]				:
Test Signal L	evel: HIGH			
Frequency				
10kHz	C G	-0.0008nF -0.07µS		0.0008nF 0.07μS
20kHz	C G	-0.0013nF -0.11µS		0.0013nF 0.11µS
20.2kHz	C G	-0.0017nF -0.0008mS		0.0017nF 0.0008mS
50.5kHz	C G	-0.0011nF -0.0008mS		0.0011nF 0.0008mS
100kHz	C G	-0.0008nF -0.0007mS		0.0008nF 0.0007mS
	Measurement S Test Signal I HIGH LOW Measurement S Test Signal I HIGH LOW SELF TEST #3 Standard OPEN, SHORT TEST [OPEN] Test Signal L Frequency 10kHz 20kHz 20.2kHz 50.5kHz	Measurement Speed: MED Test Signal Level: HIGH DISPLAY A DISPLAY B LOW DISPLAY B Measurement Speed: FAST Test Signal Level: HIGH DISPLAY A DISPLAY A DISPLAY B LOW DISPLAY B LOW DISPLAY B SELF TEST #3 Standard Open (OS) 10pF 100pF	Measurement Speed: MED	Measurement Speed: MED Test Signal Level: HIGH DISPLAY A DISPLAY B -0.0010 LOW DISPLAY B -0.0020 Measurement Speed: FAST Test Signal Level: HIGH DISPLAY A -0.0050 Measurement Speed: FAST Test Signal Level: HIGH DISPLAY A -0.0050 LOW DISPLAY B -0.0050 LOW DISPLAY B -0.0100 SELF TEST #3 Standard Open (OS) -200 counts

Paragraph	B 7-07			Results	
Number	TEST		Minimum	Actual	Maximum
4-15	OPEN, SHORT TEST (Co	nt'd)			
	200kHz	C G	0.0013nF -0.0011mS		0.0013nF 0.0011mS
	202kHz	C G	-0.0017nF -0.008mS		0.0017nF 0.008mS
	505kHz	C G	-0.0011nF -0.008mS		0.0011nF 0.008mS
:	1MHz	C G	-0.0005nF -0.007mS		0.0005nF 0.007mS
	Test Singal Leve	1: LOW			
	Frequency				
	10kHz	C G	-0.0016nF -0.14µS		0.0016nF 0.14μS
	20kHz	C G	-0.012nF -0.22µS		0.012nF 0.22µS
	20.2kHz	C G	-0.012nF -0.0016mS		0.012nF 0.0016mS
	50.5kHz	C G	-0.011nF -0.0016mS		0.011nF 0.0016mS
	100kHz	C G	-0.0016nF -0.0014mS		0.0016nF 0.0014mS
	200kHz	C G	-0.012nF -0.0022mS		0.012nF 0.0022mS
	202kHz	C G	-0.012nF -0.016mS		0.012nF 0.016mS
	. 505kHz	C G	-0.011nF -0.016mS		0.011nF 0.016mS
	1MHz	C G	-0.0010nF -0.014mS		0.0010nF 0.014mS
	[SHORT]				
	Test Signal Leve	1: HIGH			
	Frequency				
	10kHz	L ESR	-0.0009mH -0.05Ω		$0.0009 \mathrm{mH} \ 0.05 \Omega$
	20kHz	L ESR	-0.6μH -0.08Ω		0.0μΗ 0.08Ω

Paragraph	TEST			Results	<u> </u>
Number	11.01		Minimum	Actual	Maximum
4-15	OPEN, SHORT TEST (Co	ont'd)			
	20.2kHz	L ESR	-0.13μH -0.08Ω		0.13μH 0.08Ω
	50.5kHz	L ESR	-0.11μH -0.08Ω		0.11μΗ 0.08Ω
	100kHz	L ESR	-0.09μH -0.05Ω		0.09μΗ 0.05Ω
	200kHz	L ESR	-0.06μH -0.08Ω		0.06μΗ 0.08Ω
	202kHz	L ESR	-0.013μH -0.08Ω		0.013μH 0.08Ω
	505kHz	L ESR	-0.011μH -0.08Ω		0.011μH 0.08Ω
	1MHz	L ESR	-0.009μH -0.05Ω		0.009μH Ω20.0
	Test Signal Leve	:1: LOW			
	Frequency				1
	10kHz	L ESR	-0.0018mH -0.10Ω		0.0018mH 0.10Ω
	20kHz	L ESR	-1.2μH -0.16Ω		1.2μΗ 0.16Ω
	20.2kHz	L ESR	-1.2μH -0.16Ω		1.2μΗ 0.16Ω
	50.5kHz	L ESR	-1.1μH -0.16Ω		1.1μΗ 0.16Ω
	100kHz	L ESR	-0.18μH -0.10Ω		0.18μΗ 0.10Ω
	200kHz	L ESR	-0.12μH -0.16Ω		0.12μΗ 0.16Ω
	202kHz	L ESR	-0.12μH -0.16Ω		0.12μΗ 0.16Ω
	505kHz	L ESR	-0.11μH -0.16Ω		0.11μΗ 0.16Ω
	1MHz	L ESR	-0.018μH -0.10Ω		0.018μΗ 0.10Ω

Paragraph	TEST			Results			
Number			Minimum	Actual	Maximum		
4-17	CAPACITANCE ACCURACY T	EST					
	1pF Range						
	Test Signal Level:	HIGH	,				
	Frequency						
	202kHz	C D	C.V0.0052pF -0.009		C.V.+0.0052pF 0.009		
	505kHz	C D	C.V0.0046pF -0.0040		C.V.+0.0046pF 0.0040		
	1MHz	C D	C.V0.0043pF -0.0040		C.V.+0.0043pF 0.0040		
	Test Signal Level:	LOW					
	Frequency						
	202kHz	C D	C.V 0.21pF -1.0		C.V.+ 0.21pF 1.0		
	505kHz	C D	C.V 0.21pF -0.11		C.V.+ 0.21pF 0.11		
	1MHz	C D	C.V 0.027pF -0.017		C.V.+ 0.027pF 0.017		
	10pF Range						
	Test Signal Level:	HIGH					
	Frequency						
	20.2kHz	C D	C.V 0.052pF -0.009		C.V.+ 0.052pF 0.009		
	50.5kHz	C D	C.V 0.046pF -0.0040		C.V.+ 0.046pF 0.0040		
į	100kHz	C D	C.V 0.043pF -0.0040		C.V.+ 0.043pF 0.0040		
	200kHz	C D	C.V 0.048pF -0.0040		C.V.+ 0.048pF 0.0040		
	202kHz	C D	C.V 0.027pF -0.008		C.V.+ 0.027pF 0.008		
	505kHz	C D	C.V 0.021pF -0.0022		C.V.+ 0.021pF 0.0022		
	1MHz	C D	C.V 0.015pF -0.0016		C.V.+ 0.015pF 0.0016		

C.V. = Caribrated Value

Paragraph	mp.em.			Results	
Number	TEST		Minimum	Actual	Maximum
4-17	CAPACITANCE ACCURACY TEST (Cont'd)				
	Test Signal Level:	LOW			
	Frequency				
	20.2kHz	C D	C.V 2.1pF -1.0		C.V.+ 2.1pF 1.0
	50.5kHz	C D	C.V 2.1pF -0.11		C.V.+ 2.1pF 0.11
	100kHz	C D	C.V 0.27pF -0.017		C.V.+ 0.27pF 0.017
	200kHz	C D	C.V 2.1pF -0.11		C.V.+ 2.1pF 0.11
	202kHz	C D	C.V 0.14pF -0.11		C.V.+ 0.14pF 0.11
	505kHz	C D	C.V 0.13pF -0.013		C.V.+ 0.13pF 0.013
	1MHz	C D	C.V0.020pF -0.0032		C.V.+0.020pF 0.0032
	100pF Range				
	Test Signal Level:	HIGH			
	Frequency				
	10kHz	C D	C.V 0.43pF -0.0040		C.V.+ 0.43pF 0.0040
	20kHz	C D	C.V 0.48pF -0.0040		C.V.+ 0.48pF 0.0040
	20.2kHz	C D	C.V 0.27pF -0.079		C.V.+ 0.27pF 0.079
	50.5kHz	C D	C.V 0.21pF -0.0022		C.V.+ 0.21pF 0.0022
	100kHz	C D	C.V 0.18pF -0.0016		C.V.+ 0.18pF 0.0016
	200kHz	C D	C.V 0.23pF -0.0026		C.V.+ 0.23pF 0.0026
	202kHz	C D	C.V 0.27pF 0.008		C.V.+ 0.27pF 0.008
	505kHz	C D	C.V 0.21pF -0.0022		C.V.+ 0.21pF 0.0022

C.V. = Caribrated Value

Paragraph	TEST		Results			
Number		···	Minimum	Actua1	Maximum	
4-17	CAPACITANCE ACCURACY	TEST (Cont'd)				
	1MHz	C D	C.V 0.15pF -0.0016		C.V.+ 0.15pF 0.0016	
	Test Signal Level	: LOW	i			
	Frequency					
	10kHz	C D	C.V 2.7pF -0.017		C.V.+ 2.7pF 0.017	
	20kHz	C D	C.V 20pF -0.11		C.V.+ 20pF 0.11	
	20.2kHz	C D	C.V 1.4pF -0.10		C.V.+ 1.4pF 0.10	
	50.5kHz	C D	C.V 1.3pF -0.013		C.V.+ 1.3pF 0.013	
	100kHz	C D	C.V 0.36pF -0.0032		C.V.+ 0.36pF 0.0032	
	200kHz	C D	C.V 1.3pF -0.014		C.V.+ 1.3pF 0.014	
	202kHz	C D	C.V 1.4pF -0.11		C.V.+ 1.4pF 0.11	
	505kHz	C D	C.V 1.3pF -0.013		C.V.+ 1.3pF 0.013	
	1MHz	C D	C.V 0.20pF -0.0032		C.V.+ 0.20pF 0.0032	
	1000pF Range					
	Test Signal Level	: HIGH				
	Frequency					
	10kHz	C D	C.V0.0018nF -0.0016		C.V.+0.0018n 0.0016	
	20kHz	C D	C.V0.0023nF -0.0026		C.V.+0.0023r 0.0026	
	20.2kHz	C D	C.V0.0027nF -0.008		C.V.+0.0027n 0.008	
	50.5kHz	C D	C.V0.0021nF -0.0022		C.V.+0.0021r 0.0022	

C.V. = Caribrated Value

Paragraph	-			Results	
Number	TEST		Minimum	Actual	Maximum
4-17	CAPACITANCE ACCURACY	TEST (Cont'd)			
	100kHz	C D	C.V0.0018nF -0.0016		C.V.+0.0018nF 0.0016
	200kHz	C D	C.V0.0023nF -0.0026		C.V.+0.0023nF 0.0026
	202kHz	C D	C.V0.0027nF -0.008		C.V.+0.0027nF 0.008
	505kHz	C D	C.V0.0021nF -0.0022		C.V.+0.0021nF 0.0022
	1MHz	C D	C.V0.0015nF -0.0016		C.V.+0.0015pF 0.0016
	Test Signal Leve	1: LOW			
	Frequency				
	10kHz	C D	C.V0.0036nF -0.0032		C.V.+0.0036nF 0.0032
	20kHz	C D	C.V 0.014nF -0.014		C.V.+ 0.014nF 0.014
	20.2kHz	C D	C.V 0.014nF -0.11	-	C.V.+ 0.014nF 0.11
	50.5kHz	C D	C.V 0.013nF -0.013		C.V.+ 0.013nF 0.013
	100kHz	C D	C.V0.0036nF -0.0032		C.V.+0.0036nF 0.0032
	200kHz	C D	C.V 0.014nF -0.014		C.V.+ 0.014nF 0.014
	202kHz	C D	C.V 0.014nF -0.11		C.V.+ 0.014nF 0.11
:	505kHz	C D	C.V 0.013nF -0.013		C.V.+ 0.013nF 0.013
	1MHz	C D	C.V0.0020nF -0.0032		C.V.+0.0020nF 0.0032

Paragraph	TEST			Results	
Number	1201		Minimum	Actual	Maximum
4-17	CAPACITANCE ACCURACY TE	ST (Cont'd)			
	CABLE LENGTH: 1m				
	lpF Range				
	Test Signal Level:				
	HIGH	C D	C.V0.0083pF -0.0050		C.V.+0.0083pF 0.0050
	LOW	C D	C.V 0.035pF -0.019		C.V.+ 0.035pF 0.019
	10pF Range				
	HIGH	C D	C.V 0.020pF -0.0019		C.V.+ 0.020pF 0.0019
	LOW	C D	C.V 0.030pF -0.0038		C.V.+ 0.030pF 0.0038
	100pF Range				
	HIGH	C D	C.V 0.18pF -0.0018		C.V.+ 0.18pF 0.0018
	LOW	C D	C.V 0.26pF -0.0036		C.V.+ 0.26pF 0.0036
	1000pF Range				1
	HIGH	C D	C.V0.0021nF -0.0019		C.V.+0.0021nF 0.0019
	LOW	C D	C.V0.0032nF -0.0038		C.V.+0.0032nF 0.0038
4-19	RESISTANCE ACCURACY TES	Τ			
	100Ω Range				
	Frequency Test	Signal Level			
	10kHz	HIGH LOW	C.V 0.15Ω C.V 1.2Ω		C.V. + 0.15Ω C.V. + 1.2Ω
	20kHz	HIGH LOW	C.V 0.15Ω C.V 1.2Ω		C.V. + 0.15Ω C.V. + 1.2Ω
	50.5kHz	HIGH LOW	C.V 0.15Ω C.V 1.2Ω		$\begin{array}{c} \text{C.V.} + 0.15\Omega \\ \text{C.V.} + 1.2\Omega \end{array}$
	100kHz	HIGH LOW	C.V 0.15Ω C.V 0.30Ω		C.V. + 0.15Ω C.V. + 0.30Ω

Paragraph		TEST		Results	
Number		11.51	Minimum	Actua1	Maximum
4-19	RESISTANCE ACCU	RACY TEST (Cont'd)			
	200kHz	HIGH LOW	C.V 0.15Ω C.V 0.30Ω		C.V. + 0.15Ω C.V. + 0.30Ω
	505kHz	HIGH LOW	C.V 0.15Ω C.V 0.30Ω		C.V. + 0.15Ω C.V. + 0.30Ω
	1MHz	HIGH LOW	$C.V 0.15\Omega$ $C.V 0.30\Omega$		$C.V. + 0.15\Omega$ $C.V. + 0.30\Omega$
	1kΩ Range				
	Frequency	Test Signal Level			
	10kHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
	20kHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
	50.5kHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
	100kHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
i	200kHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
	505kHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
	1MHz	HIGH LOW	C.V0.006kΩ C.V0.012kΩ		C.V.+0.006kΩ C.V.+0.012kΩ
	10kΩ Range				
	Frequency	Test Signal Level			
	10kHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
	20kHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
	50.5kHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
	100kHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
	200kHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
<u> </u>					

C.V. = Calibrated Value

PERFORMANCE TEST RECORD

Paragraph					
Number			Minimum	Actual	Maximum
4-19	RESISTANCE ACCUI	RACY TEST (Cont'd)			
	50.5kHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
	1MHz	HIGH LOW	C.V 0.06kΩ C.V 0.12kΩ		C.V.+ 0.06kΩ C.V.+ 0.12kΩ
	$100 k\Omega$ Range]		
	Frequency	Test Signal Level			
	10kHz	HIGH LOW	C.V 0.6kΩ C.V 1.2kΩ		C.V. + 0.6kΩ C.V. + 1.2kΩ
	20kHz	HIGH LOW	C.V 0.6kΩ C.V 1.2kΩ		C.V. + 0.6kΩ C.V. + 1.2kΩ
	50.5kHz	HIGH LOW	C.V 0.6kΩ C.V 1.2kΩ		C.V. + $0.6k\Omega$ C.V. + $1.2k\Omega$
	100kHz	HIGH LOW	C.V 0.6kΩ C.V 1.2kΩ		C.V. + $0.6k\Omega$ C.V. + $1.2k\Omega$
4-21	PHASE ACCURACY T	EST			
	Frequency	Test Signal Level	dog		,
	10kHz	HIGH LOW	deg 0.52 1.4		deg -0.52 -1.4
	20kHz	HIGH LOW	0.52		-0.52 -1.4
	50.5kHz	HIGH LOW	0.52		-0.52 -1.4
	100kHz	HIGH LOW	0.52 1.4		-0.52 -1.4
	200kHz	HIGH LOW	0.52 1.4		-0.52 -1.4
	505kHz	HIGH LOW	0.52 1.4		-0.52 -1.4
	1MHz	HIGH LOW	0.52 1.4		-0.52 1.4

PERFORMANCE TEST RECORD

Paragraph		Results		
Number	TEST	Minimum	Actual	Maximum
4-23	INT DC BIAS SUPPLY TEST			
	DC Bias Setting			
	-0.01V	-20.1mV		0.1mV
	6.82V	6.7895V		6.8505V
	-9.99V	-10.0999V		-9.8801V
	10V	9.915V		10.085V
	-12.7V	-12.862V		-12.538V
	40V	39.765V		40.235V
	-40V	-40.435V		-39.565V
				Í
	3			
ļ				

SECTION V ADJUSTMENT

5-1. INTRODUCTION

5-2. This section describes the adjustments and checks required to return the 4277A to the specifications listed in Table 1-1 after repairs have been made. These adjustments and checks can also be performed along with periodic maintenance to keep the instrument in optimum operating condition. The recommended adjustment cycle for the 4277A is every six months. All adjustable components referred to in the adjustment procedures are listed in Table 5-1. If proper performance cannot be achieved after adjustment, refer to the troubleshooting procedures described in Section VIII.

Note

To ensure proper results and instrument operation, Hewlett-Packard suggests a 30-minute warm-up and stabilization period before performing any of the adjustments described here.

5-3. SAFETY REQUIREMENTS

5-4. Although the 4277A was designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure operator safety and to keep the instrument in a safe and serviceable condition. Adjustments described in this section should be performed by qualified service personnel only.

WARNING

ANY INTERRUPTION OF THE PROTECTIVE (GROUNDED) CON-DUCTOR (INSIDE OR OUTSIDE THE INSTRUMENT) OR DISCONNECTION OF THE **PROTECTIVE** EARTH TERMINAL IS LIKELY TO MAKE THE INSTRUMENT DANGEROUS. INTENTIONAL INTERRUPTION, FOR ANY REASON, IS PROHIBITED.

- 5-5. The removal or opening of covers for removal or adjustment of parts, other than those which are accessible by hand, will expose live parts.
- 5-6. Capacitors in the instrument may still be charged even if the instrument has been disconnected from the power source (AC line) for an extended period of time.

WARNING

ADJUSTMENTS DESCRIBED IN THIS SECTION ARE PERFORMED WITH POWER SUPPLIED AND PROTECTIVE COVERS REMOVED. ENERGY EXISTING AT MANY POINTS MAY, IF CONTACTED, RESULT IN SERIOUS PERSONAL INJURY.

5-7. EQUIPMENT REQUIRED

5-8. All the equipment required to perform the adjustments described in this section are listed in Table 4-1 on page 4-A and B. Each piece of equipment listed in Table 4-1 should be calibrated to satisfy its own specifications, as well as those of the required characteristics. If the recommended model is not available, any instrument whose specifications equal or surpass those of the recommended model may be used instead.

5-9. FACTORY SELECTED COMPONENTS

5-10. Factory selected components are identifiable by an asterisk (*) adjacent to the reference designator on the schematic diagrams in Section VIII (only nominal values are given). Table 5-2 lists the reference designators of all factory selected components. Also listed in Table 5-2 are the nominal value range of each component and a brief description of how each component affects instrument performance.

Adjustable components, with reference designators, are listed in Table 5-1. This table also lists the name of the adjustment and its purpose.

SECTION V Model 4277A

Table 5-1. Adjustable Components

Reference Designator	Name of Control	Purpose
A1 R3 (Para. 5-19)		Set the reset voltage level.
A2 C46 C50 (Para. 5-31)	1K/PH 10K/PH	Compensates for stray capacitances in the range resistor circuit and eliminates measurement inaccuracy due to range resistor current phase shift.
A2 C84 (Para. 5-29)	100/РН	Adjusts the phase tracking of the VRD input circuit.
A2 C99 (Para. 5-33)	AM/PH	Eliminates phase errors from the AM Amplifier.
A2 R6 (Para. 5-21)	OSC/LEVEL	Adjusts the test signal level.
A2 R16 R17 (Para. 5-23 27)	OFFSET	Minimizes the offset voltage of the TRD circuit.
A2 R34 R35 (Para. 5-29)	10K/MAG 1K/MAG	Adjusts the range resistor.
A2 R56 (Para. 5-29)	100/MAG	Adjusts the gain of the VRD input circuit for maximum measurement accuracy.
A2 R80 R81 (Para. 5-25)	ZERO/SHIFT ZERO	Adjusts the zero offset value of the integrator.
A4 R16 (Para. 5-17/-19)	V-ADJ	Adjusts the dc power supply output voltage.
A4 R17 (Para. 5-17)	F-ADJ	Adjusts the dc power supply switching frequency.
A22 R6 R7 R8 (Opt. 001) (Para. 5-35)	ZERO ADJ FS ADJ ZERO ADJ	Adjusts the dc bias output voltage.

Table 5-2. Factory Selected Components

Component	Nominal Value Range	Effect on Performance
A2 C47	HP P/N 0160-2236 C: FXD 1.0pF HP P/N 0160-2237 C: FXD 1.2pF *HP P/N 0160-5595 C: FXD 2.0pF HP P/N 0160-5596 C: FXD 3.0pF HP P/N 0160-5597 C: FXD 5.0pF	Changes the range resistor phase compensation adjustment range.
A2 C48	HP P/N 0160-5597 C: FXD 5.0pF *HP P/N 0160-5592 C: FXD 10.0pF HP P/N 0160-4789 C: FXD 15.0pF	compensation adjustment lange.
A2 C98	*HP P/N 0160-4794 C: FXD 5.6pF HP P/N 0160-4791 C: FXD 10.0pF HP P/N 0160-4788 C: FXD 18.0pF	Changes the AM Amp phase compensation adjustment range.
A2 C118	HP P/N 0160-4791 C: FXD 10pF *HP P/N 0160-4790 C: FXD 12pF HP P/N 0160-4789 C: FXD 15pF	Changes the frequency-phase compensation characteristic of the Phase Detector Input Amplifier.
A2 C141	*HP P/N 0160-4791 C: FXD 10.0pF HP P/N 0160-4787 C: FXD 22.0pF HP P/N 0160-4786 C: FXD 27.0pF	Changes the VRD input tracking adjustment range from the EDUT
A2 R97	HP P/N 0757-0398 R: FXD 75.0 *HP P/N 0757-0401 R: FXD 100.0 HP P/N 0757-0403 R: FXD 121.0 HP P/N 0757-0405 R: FXD 162.0	circuit.
A2 R24	*HP P/N 0757-0433 R: FXD 3.32k HP P/N 0757-0434 R: FXD 3.65k	Changes the gain of the MOD Amplifier.
A2 R31	HP P/N 0698-4395 R: FXD 78.7 *HP P/N 0757-0399 R: FXD 82.5 HP P/N 0698-4398 R: FXD 86.6	Changes the attenuation value when TEST SIG LEVEL is set to LOW.
A2 L4	HP P/N 8159-0005 JUMPER WIRE (0H) *HP P/N 9100-2251 L: FXD 100nH HP P/N 9100-2251 L: FXD 220nH HP P/N 9100-0368 L: FXD 330nH HP P/N 9100-2255 L: FXD 470nH HP P/N 9140-0141 L: FXD 680nH	Changes the frequency characteristics
A2 L6	HP P/N 8159-0005 JUMPER WIRE (0H) HP P/N 9100-2247 L: FXD 100nH *HP P/N 9100-2251 L: FXD 220nH HP P/N 9100-0368 L: FXD 330nH HP P/N 9100-2255 L: FXD 470nH HP P/N 9140-0141 L: FXD 680nH	of the VRD input tracking circuit.

Note: Component marked (*) in table is usually used.

5-11. ADJUSTMENT RELATIONSHIPS

5-12. The adjustment procedures described in this section, beginning with paragraph 5-17, are interactive and therefore should be performed in the sequence given. Ignoring or changing the order of the procedures may make it impossible to obtain optimum instrument performance. Table 5-3 lists the necessary adjustment procedures to follow after the instrument has been repaired.

5-13. ADJUSTMENT LOCATIONS

5-14. To help locate the appropriate adjustment points, the locations of the components to be adjusted illustrated throughout are adjustment procedures. The locations of factory selected components, connectors, and other components related to the adjustments are individual the board illustrations (fold-out assembly-component service sheets) in Section VIII.

5-15. INITIAL OPERATING PROCEDURE

5-16. Before proceeding with the adjustments described starting in paragraph 5-17, perform the following three preliminary procedures. These procedures provide access to the various adjustment points and facilitate a thoroughgoing adjustment.

[BASIC OPERATING CHECK]

Check that the LINE VOLTAGE SELECTOR switches on the rear panel are set for the This check must be local line voltage. performed before the instrument connected to a power source. When the 4277A is turned on, verify that no error message is displayed on DISPLAY A. After the recommended 30-minute warm-up period, the instrument should pass the SELF TEST (no error message should appear). If the instrument displays an error message, refer to the troubleshooting procedures given in Section VIII.

Note

The error message "E68" may be displayed immediately after the 4277A is turned on. If "E68" is displayed, turn the 4277A off and then on. If "E68" is still displayed, refer to the troubleshooting procedures, "E68" denotes a Check Sum Error in the Continuous Memory RAM.

[TOP COVER REMOVAL]

- a. Fully loosen the top-cover retaining screw located at the rear of the top cover.
- b. Slide the top cover rearward and lift it off.

WARNING

AS A SAFETY PRECAUTION AGAINST POSSIBLE ELECTRICAL AHOCK HAZARDS AND RESULTANT INJURY, USE INSULATED TOOLS FOR ALL ADJUSTMENTS.

Table 5-3. Adjustment Requirements

Assembly repaired or replaced	Required adjustment(s)
A1 04277-66501 (Main Logic)	Para. 5-17
A2 04277-66502 (Analog Circuits)	Para. 5-19, 5-21, 5-23 5-25, 5-27, 5-29 5-31
A4 04277-66502 (Power supply)	Para. 5-15
A5 04277-66505 A6 04277-66506 A21 04276-66521	None
A22 04276-66522 (Opt. 001 DC Bias)	Para. 5-33

5-17. DC POWER SUPPLY ADJUSTMENT

5-18. This adjustment accurately sets the dc output voltages and frequency of the switching power supply (A4 board).

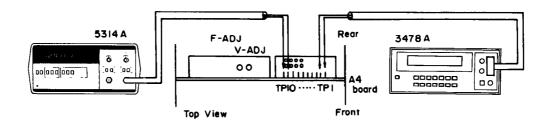


Figure 5-1. DC Power Supply Adjustment Setup.

EQUIPMENT:

Digital Voltmeter	HP	3478A
Frequency Counter	ΗP	5314A
Dual Banana Plug to Alligator Clip Cable	HP	11002A
1:1 Probe	HP	10007B

PROCEDURE:

- 1. Connect the HI lead of the 3478A to A4TP1 (+5 DIG) and the LO lead to A4TP2 (DIG GND) as shown in Figure 5-1
- 2. Set the 3478A's controls as follows:

FUNCTION == V RANGE AUTO

- 3. Adjust A4R16 (V-ADJ) until the reading on the 3478A is 5.10V±0.01V.
- 4. Connect the LO lead of the 3478A to A4TP10 (GND).
- 5. Verify that the voltages at A4TP3, TP4, TP5, TP6 and TP7 are within the test limits given in Table 5-4. Any voltage outside the limits must be reset by adjusting A4R16.
- 6. Disconnect the 3478A and connect the 5314A to A4TP9 (DIG PWM) and TP10 (GND) using a 1:1 probe as shown in Figure 5-1.
- 7. Set the 5314A to measure a 20 KHz signal with 10Hz resolution.
- 8. Adjust A4R17 (F-ADJ) until the reading on the 5314A is 19kHz±100Hz.

Note

It may be necessary to adjust the trigger level of the 5314A for accurate frequency measurement.

Al board

ADJUSTMENTS

Table 5-4. DC Power Supply Voltage Test Limits.

Test point	Test limits
Test point	rest limits
A4TP1	5.09V to 5.11V
A4TP3	11.0 V to 13.0 V
A4TP4	-11.0 V to -13.0 V
A4TP5	15.0 V to 17.0 V
A4TP6	-15.0 V to -17.0 V
A4TP7	8.0 V to 10.0 V

5-19. RESET CIRCUIT ADJUSTMENT

5-20. This adjustment accurately sets the reset voltage level of the microprocessor.

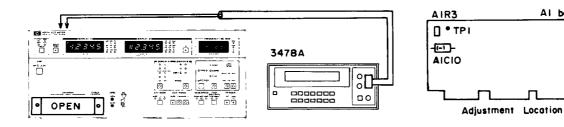


Figure 5-2. Reset Circuit Adjustment Setup.

EQUIPMENT:

Digital Voltmeter HP 3478A Dual Banana Plug to Alligator Clip Cable HP 11002A Resistance Standard (OPEN Termination)............ HP 16074A Standard Resistor Set

Note

If you use Option 001, 002 or HP-IB function, optional components *1001, *2002 or *3 HP-IB must be installed before making this adjustment. This adjustment must be performed immediately after Option 001 or 002 has been installed.

- *1 HP P/N 04276-66522
- *2 HP 16064A
- *3 HP P/N 04276-66521

PROCEDURE:

- 1. Connect the HI lead of the 3478A to AlTPl and the LO lead to the negative lead of AlClo. Connect the OPEN termination directly to the UNKNOWN terminals.
- 2. Set the 3478A's controls as follows:

- 3. Press the SELF TEST key and then the FREQUENCY/DC BIAS select key. Select SELF TEST item number "7" by pressing the FREQUENCY/DC BIAS step control key (③ or ④) several times until SELF TEST item number "7" is displayed on the FREQUENCY/DC BIAS display.
- 4. Turn A1R3 all the way to the left, and adjust A4R16 (V-ADJ) until the reading on the 3478A is 4.80V±0.02V.
- 5. Gradually adjust A1R3 until the 4277A's displays are blank.

Note

The $4277\,\mathrm{A}$ display may go on and off at this time, this is an acceptable condition.

- 6. Adjust A4R16 (V-ADJ) until the reading on the 3478A is 5.00V±0.05V, and verify that the 4277A displays any of the alphanumeric figures.
- 7. Turn A4R16 (V-ADJ) slowly, all the way to the left, until the 4277A displays are blank, and verify that the reading on the 3478A is $4.80V\pm0.03V$.
- 8. Adjust A4R16 (V-ADJ) until the reading on the 3478A is 5.10V±0.02V.

5-21. TEST SIGNAL LEVEL ADJUSTMENT

5-22. This is the fine adjustment for the test signal level in the HIGH and LOW positions.

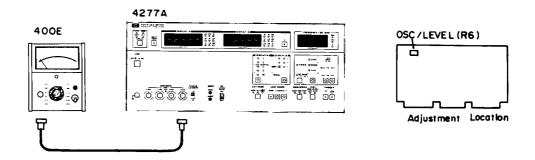


Figure 5-3. Test Signal Level Adjustment Setup.

EQUIPMENT:

RF Voltmeter HP 400E BNC (m) to BNC (m) Cable HP 11170B

PROCEDURE:

- 1. Connect the 400E to the UNKNOWN Hour terminal of the 4277A using a BNC (m) to BNC (m) cable as shown in Figure 5-3.
- 2. Set the 4277 A's controls as follows:

Test Frequency	1MHz
TEST SIG LEVEL	HIGH
DC BIAS	OFF
Other Controls	Any setting

- 3. Set RANGE of the 400E to IVrms.
- 4. Adjust A2R6 (LEVEL) until the reading on the 400E is 1.00V±0.01V.
- 5. Set the Test Frequency and the Test Signal Level in accordance with Table 5-5. Verify that the reading on the 400E is within the test limits given in the table. Change the 400E's range as appropriate for the test signal level.

Table 5-5. Test Signal Level Test Limits

Test Frequency	Test Limits			
	TEST SIG LEVEL "HIGH"	TEST SIG LEVEL "LOW"		
1MHz	0.99V to 1.01V	*(18.8mV to 21.2mV)		
100KHz	0.94V to 1.06V	18.2mV to 21.8mV		
10KHz	0.94V to 1.06V			

Note

For test limits marked with and asterisk *, if a reading on the 400E is greater than 21.2mV, change the value of A2R31 (82.5 Ω) to 78.7 Ω . If it is less than 18.8mV, change the value of A2R31 to 86.6 Ω . Refer to Table 5-2 for the part number of the appropriate resistor.

5-23. BRIDGE OFFSET ADJUSTMENT

5-24. This is a preliminary adjustment before making an optimum TRD offset adjustment (in paragraph 5-27).

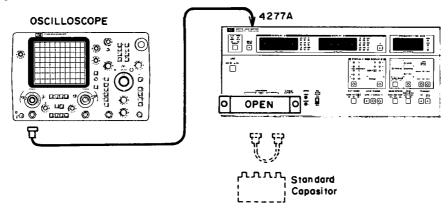
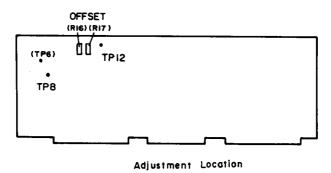



Figure 5-4. Bridge Offset Adjustment Setup.

EQUIPMENT:

Oscilloscope	HP 1740A
10:1 Divider Probe	HP 10004D
Resistance Standard (OPEN Termination)	HP 16074A Standard
	Resistor Set
BNC (m)-to-BNC (m) Cable	locm long, lea.
Standard Capacitor	100pF: HP 16383A

PROCEDURE:

- 1. Connect the OPEN termination of the 16074A directly to the UNKNOWN terminals as shown in Figure 5-4.
- 2. Set the 4277 A's controls as follows:

DISPLAY A function	C
DISPLAY B function	ESR/G
Test Frequency	
CIRCUIT MODE	
C RANGE	lnF
TEST SIG LEVEL	
DC BIAS	
SELF TEST	
Other Controls	

3. Set the 1740A's controls as follows:

VOLT/DIV		5mV or 10mV
TIME/DIV		$2\mu s$
	***************************************	INT

- 4. Connect the 1740A input to A2TP8 as shown in Figure 5-4.
- 5. Adjust A2R16 and R17 (OFFSET) until the amplitude of the waveform displayed on the oscilloscope is minimized as shown in Figure 5-5.

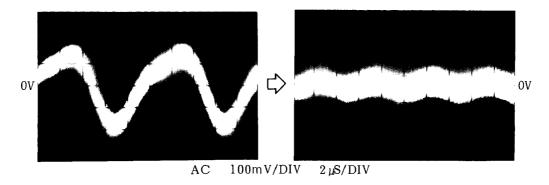


Figure 5-5. Amplitude Adjustment.

Note

A2R16 and R17 are interactive.

- 6. Disconnect the OPEN termination from the UNKNOWN terminals and connect a BNC (m)-to-BNC (m) cable between the LPOT and the HCUR terminals as shown in Figure 5-4.
- 7. Set SELF TEST item 16.

Note

To set SELF TEST item 16:

- i. Press the SELF TEST key and then the FREQUENCY/DC BIAS select key.
- ii. Press the FREQUENCY/DC BIAS step control key (⋄ or ⋄) several times until the SELF TEST item number "16" is displayed on the FREQUENCY/DC BIAS display.
- 8. Change the vertical sensitivity of the oscilloscope to $0.2V/\mathrm{DIV}$, and connect the input probe to A2TP12.
- 9. The amplitude of the waveform on the oscilloscope should be at least 8.5Vp-p. If it is too low, change the value of A2R24. Changing the resistance value (normally $3.32 \mathrm{k}\Omega$) to *3.65k Ω increases the amplitude by 10%.
 - * HP P/N 0757-0434
- 10. Disconnect the BNC-to-BNC cable from the LPOT and HCUR terminals and connect the 100pF standard capacitor directly to the UNKNOWN terminals.

11. Set the 4277 A's controls as follows:

DISPLAY A Function	C
Test Frequency	lMHz
C RANGE	100pF
TRIGGER	INT
CABLE LENGTH	0
DC BIAS	OFF
SELF TEST	ON (item number 16)
Other controls	Any setting

12. Verify that reading on DISPLAY A is between 0.2000 and 0.8000. If it is not, change the value of A2C118 (Normally 12pF) to 10pF or 15pF. Decreasing the capacitance value increases the reading on DISPLAY A. Refer to Table 5-2 for the part number of the appropriate capacitor.

Note

Do not use a capacitor larger than 15pF.

5-25. INTEGRATOR ADJUSTMENT

5-26. This adjustment sets the detection timing of the Zero Detector to minimize the offset count error, which is caused by the A-D converter output offset.

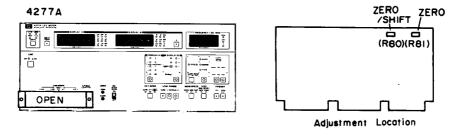


Figure 5-6. Integrator Adjustment Setup.

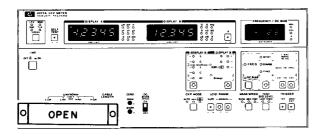
EQUIPMENT:

PROCEDURE:

- 1. Connect the OPEN termination of the 16074A directly to the UNKNOWN terminals as shown in Figure 5-6.
- 2. Set the 4277A's controls as follows:

Test Frequency	100kHz
MEAS SPEED	
TEST SIG LEVEL	
SELF TEST	ON (item number 8)
Other Controls	
	11119 000011116

3. Adjust A2R81 (ZERO) until the reading on DISPLAY A satisfies the following equation.


reading on DISPLAY A = -(reading on DISPLAY B) ± 0.0002

4. Adjust A2R80 (ZERO/SHIFT) until the readings on DISPLAY A and DISPLAY B are within the following limits.

reading on DISPLAY $A = 0.0034 \pm 0.0002$ -(reading on DISPLAY $B = 0.0034 \pm 0.0002$

5-27. TRD OFFSET ADJUSTMENT

5-28. This adjustment eliminates the dc offset voltages from the bridge circuit.

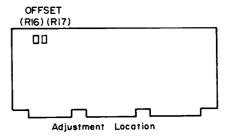


Figure 5-7. TRD Offset Adjustment Setup.

EQUIPMENT:

PROCEDURE:

- 1. Connect the OPEN termination of the 16074A directly to the UNKNOWN terminals as shown in Figure 5-7.
- 2. Set the 4277A's controls as follows:

DISPLAY A Function	C
DISPLAY B Function	ESR/G
Test Frequency	l MHz
CIRCUIT MODE	«□
C RANGE	lnF
MEAS SPEED	MED
TEST SIG LEVEL	HIGH
SELF TEST	ON (item number 12)
Other Controls	Any setting

3. Adjust A2R16 and R17 (OFFSET) until the readings on DISPLAY A and DISPLAY B are 0 ± 3 counts.

- 4. Release the SELF TEST function by pressing the SELF TEST key. Set the test frequency to 20.2 kHz.
- 5. Verify that the reading on DISPLAY A is 0±5 counts. If the reading is outside the limits, readjust A2R17 until the reading on DISPLAY A is +4 or -4 counts.
- 6. Set the test frequency and the Test Signal Level in accordance with Table 5-6 and verify that the readings on DISPLAY A do not exceed the test limits given in the table.

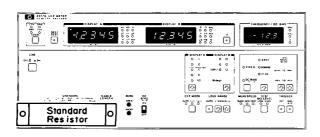

Table 5 0. The officer feet Elimite				
	Test Limits			
Test	TEST SIG LEVEL "HIGH"		TEST SIG	LEVEL "LOW"
Frequency	DISPLAY A	DISPLAY B	DISPLAY A	DISPLAY B
1MHz	0±2 counts	0±2 counts	0±3 counts	0±3 counts
202KHz	0±5 counts	0±3 counts	0±2 counts	0±3 counts
100KHz	0±3 counts	0±2 counts	0±4 counts	0±3 counts
20.2KHz	0±5 counts	0±3 counts	0±2 counts	0±3 counts
10KHz	0±4 counts	0±3 counts	0±5 counts	0±4 counts

Table 5-6. TRD Offset Test Limits

5-29. RANGE RESISTOR AND PHASE TRACKING ADJUSTMENT

5-30. This adjustment consists of four adjustments and a verification check;

1) 100/MAG Adjustment	
2) 10K/MAG Adjustment	input circuit. adjusts the value of the
3) 1K/MAG Adjustment	range resistor. adjusts the value of the
4) 100/PH Adjustment	range resistor.
5) Verification Check	tracking.
3) Verification Check	accuracy after the 100/pH adjustment.

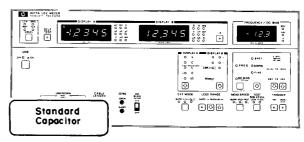


Figure 5-8. Range Resistor and Phase Tracking Adjustment Setup

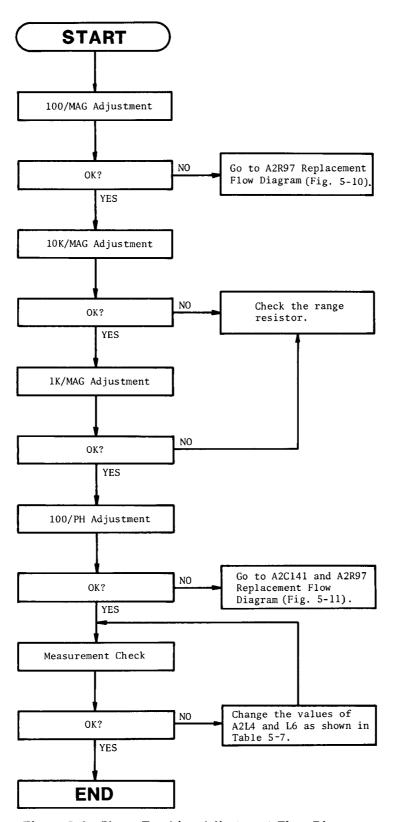
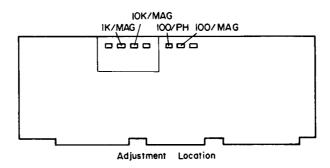



Figure 5-9. Phase Tracking Adjustment Flow Diagram.

EQUIPMENT:

Standard Capacitor......1000pF: HP 16384A

PROCEDURE:

- 1) 100/MAG Adjustment
 - 1. Set the 4277A's controls as follows:

- 2. Perform Open and Short zero offset adjustments.
- 3. Connect the 100Ω standard resistor directly to the UNKNOWN terminals.
- 4. Adjust A2R56 (100/MAG) until the reading on DISPLAY B is 1/C.V.±0.001 C.V.= calibrated (resistance) value of the standard resistor.

Note

If the 100/MAG adjustment cannot be performed successfully, change the value of A2R97 using the procedure (flow diagram) in Figure 5-10.

2) 10K/MAG Adjustment

- 1. Select the 100pF Capacitance range by pressing the LC |Z| RANGE key $(\odot \text{ or } \odot)$ and Connect the $10k\Omega$ standard resistor in place of the 100Ω .
- 2. Adjust A2R34 (10K/MAG) until the reading on DISPLAY B is $1/C.V.\pm0.01\,\mu\text{S}.$ C.V. is the calibrated (resistance) value of the standard resistor.

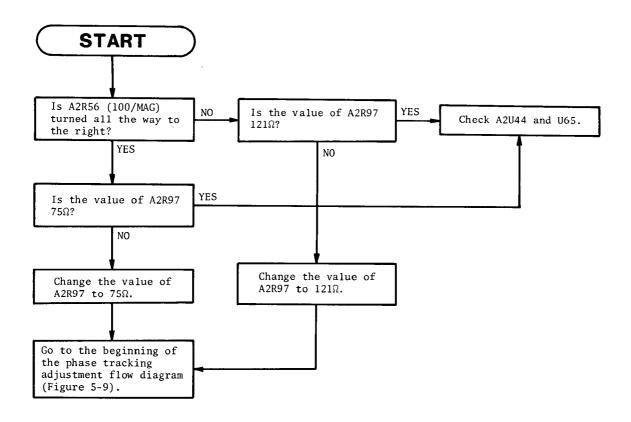


Figure 5-10. A2R97 Replacement Flow Diagram.

3) 1K/MAG Adjustment

- 1. Set the C range to 1nF and connect the $1k\Omega$ standard resistor to the UNKNOWN terminals.
- 2. Adjust A2R35 (1K/MAG) until the reading on DISPLAY B is $1/C.V.\pm0.0001$ mS. C.V. is the calibrated (resistance) value of the standard resistor.

4) 100/PH Adjustment

1. Set the 4277 A's controls as follows:

DISPLAY B Function	D
Test Frequency ·····	lMHz
C RANGE	lnF

- 2. Connect the 1000pF standard capacitor directly to the UNKNOWN terminals.
- 3. Adjust A2C84 (100/PH) until the reading on DISPLAY B is 0±2 counts.

Note

If the 100/PH adjustment cannot be performed successfully, change the value of A2C141 or A2R97 using the A2C141/A2R97 replacement flow diagram in Figure 5-11.

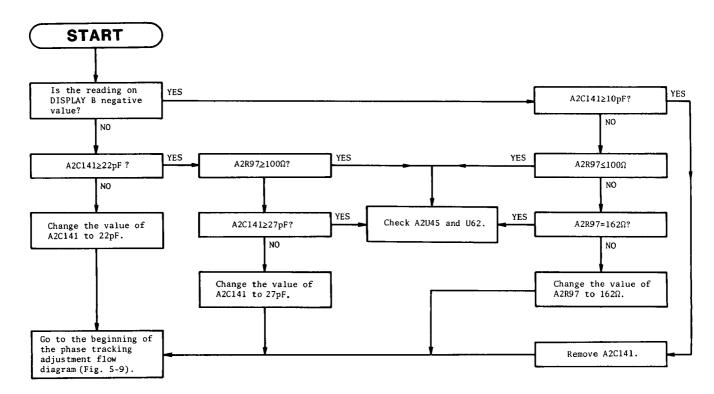


Figure 5-11. A2C141/A2R97 Replacement Flow Disglam.

5) Verification check

- 1. Connect the 1000pF standard capacitor directly to the UNKNOWN terminals.
- 2. Set the 4277 A's controls as follows:

DISPLAY A Function	С
DISPLAY B Function	D
Test Frequency	lMHz
CIRCUIT MODE	
LC Z RANGE	AUTO
TEST SIG LEVEL	
TRIGGER	INT
DC BIAS	OFF
CABLE LENGTH	

3. Verify that the reading on DISPLAY A is C.V.+0.0001nF to C.V.+0.0005nF. C.V. is the calibrated value of the standard capacitor.

Note

If the displayed value exceeds the limits, change the value of A2L4 or L6 to an appropriate value in accordance with Table 5-7.

Table 5-7. A2L4 and A2L6 Nominal Value	Table 5-7.	A2L4 and	A 2 L 6	Nominal	Values
--	------------	----------	---------	---------	--------

Capacitance Reading on DISPLAY A	Reference Designation	Appropriate Value
C.V.÷ 0.001nF ~ C.V.+0.0008nF	A2L6	680nH
C.V.+0.0007nF ~ C.V.+0.0006nF	A2L6	470nH
C.V. ~ C.V.±0.0001nF	A2L6	100nH
C.V0.0002nF ~ C.V0.0004nF	A2L4	470nH
C.V0.0005nF ~ C.V0.0007nF	A2L4	680nH

C.V.=calibrated value of the standard capacitor.

5-31. RANGE RESISTOR PHASE ADJUSTMENT

5-32. This adjustment minimizes phase error in the range resistor circuit.

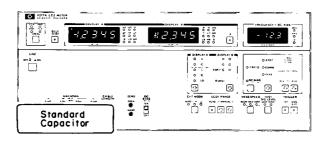
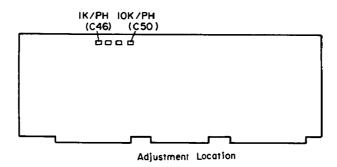



Figure 5-12. Range Resistor Phase Adjustment Setup.

EQUIPMENT:

100pF: HP 16383A

PROCEDURE:

- 1. Connect the 10pF standard capacitor directly to the UNKNOWN terminals.
- 2. Set the 4277 A's controls as follows:

DISPLAY A Function	C
DISPLAY B Function	D
Test Frequency	lMHz
CIRCUIT MODE	«ŒD»
LC Z RANGE	AUTO
MEAS SPEED	MED
TEST SIG LEVEL	HIGH
DC BIAS	
CABLE LENGTH	0
SELF TEST	

3. Adjust A2C50 (10K/PH) until the reading on DISPLAY B is between -1 count and 2 counts.

Note

If the 10K/PH adjustment cannot be performed successfully, change the value of A2C47 (normally 2pF) to *lpF or *5pF.

- 4. Connect the 100pF standard capacitor in place of the 10pF standard capacitor.
- 5. Adjust A2C46 (1K/PH) until the reading on DISPLAY B is -1 count to 2 counts.

Note

If the 1K/PH adjustment cannot be performed successfully, change the value of A2C48 (normally 10PF) to *5pF or *15pF.

* Refer to Table 5-2 for the part number of the appropriate capacitor.

5-33. AM AMPLIFIER ADJUSTMENT

5-34. This adjustment compensates for phase error in the AM Amplifier.

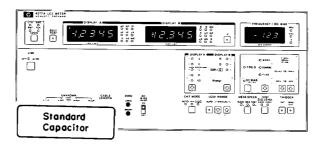
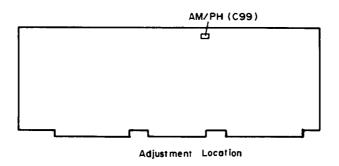



Figure 5-13. AM Amplifier Adjustment Setup.

EQUIPMENT:

Standard Capacitor lpF: HP16381A

PROCEDURE:

- 1. Connect the 1pF standard capacitor directly to the UNKNOWN terminals.
- 2. Set the 4277 A's controls as follows:

DISPLAY A Function	
DISPLAY B Function	D
Test Frequency	
CIRCUIT MODE	~ □
LC Z RANGE	
MEAS SPEED	
TEST SIG LEVEL	HIGH
SELF TEST	OFF

- 3. Adjust A2C99 (AM/PH) until the reading on DISPLAY B is between -1 count and 3 counts.
- 4. Verify that the reading on DISPLAY A is C.V.±0.0015pF. C.V. is the calibrated value of the standard capacitor.

Note

If the reading on DISPLAY B is greater than 4 counts, change the value of A2C98 (normally 5.6pF) to 18pF (HP P/N: 0160-4788). If it is less than -2 counts, remove A2C98.

Model 4277A SECTION V

ADJUSTMENTS

5-35. INT DC BIAS SUPPLY ADJUSTMENT

5-36. This adjustment sets the gain of the DAC and Amplifier circuit in order to apply accurate dc bias voltage to the DUT.

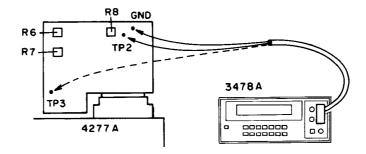


Figure 5-14. INT DC Bias Supply Adjustment Setup.

EQUIPMENT:

Digital Voltmeter	HP	3478A
Dual Banana Plug to Alligator Clip Cable		
BNC to Dual Banana Plug Cable	HP	11001A
Extender Board		

PROCEDURE:

- 1. Extend the A22 board as shown in Figure 5-14.
- 2. Set the DC Bias voltage to 0.00V.
- 3. Set the DC BIAS select switch on the rear panel to INT and the DC BIAS switch on the front panel to ON.
- Connect the HI lead of the 3478A to A22TP2 and the LO lead to the GND pin on the A22 board.
- 5. Set the 3478A's control as follows:

```
FUNCTION ..... =-V
RANGE ..... AUTO
```

- 6. Adjust A22R8 until the reading on the 3478A is 0V±0.05mV.
- 7. Connect the HI lead of the 3478A to A22TP3, and adjust A22R6 until the reading on the 3478A is $0V \pm 0.2mV$.
- 8. Disconnect the dual banana-to-alligator clip cable from the 3478A and connect a BNC-to-dual banana plug cable between the 3478A input and the EXT INPUT/INT MONITOR connector.
- 9. Set the DC Bias voltage to 9.99V.
- 10. Adjust A22R7 until the reading on the 3478A is 9.990V±0.002V.

Model 4277A SECTION VI

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-2 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. ABBREVIATIONS

6-4. Table 6-1 lists abbreviations used in parts list, schematics and throughout the manual. In some cases, two forms of abbreviations are used, one in all capital letters, and one in partial capitals or no capitals. This occurs because the abbreviations in parts list are always all capitals. However, in the schematic and in other parts of the manual, other abbreviation forms with both lower case and upper case letters are used.

6-5. REPLACEABLE PARTS LIST

- 6-6. Table 6-3 is a list of replaceable parts and is organized as follows:
 - a. Electrical assemblies and their components in alphanumerical order by reference designation.
 - b. Chassis-mounted parts in alphanumerical order by reference designation.
 - c. Miscellaneous parts.
 - d. Illustrated parts breakdowns, if appropriate.

The information for each part includes:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.
- c. A description of the part.
- d. A typical manufacturer of the part in a five-digit code.
- e. The manufacturer's number for the part.

Table 6-1. List of Reference Designators and Abbreviations

			REFERENCE DESI	GNATORS			
A	= assembly	E	= misc electronic part	P	= plug	U	= integrated circuit
В	= motor	F	= fuse	Q	= transistor	v	= vacuum, tube, neor
BT	= battery	FL	= filter	Ř	= resistor	•	bulb, photocell, etc
С	= capacitor	J	= jack	RT	= thermistor	VR	= voltage regulator
CP	= coupler	K	= relay	S	= switch	w.	= cable
CR	= diode	L	= inductor	Ť	= transformer	x	= cable = socket
DL	= delay line	M	= meter	ŤВ	= terminal board	Ŷ	
DS	= device signaling (lamp)	MP	= mechanical part	TP	= test point	•	= crystal
			ABBREVIAT	ONS			
A	= amperes	н	= benries	NPN	= negative-positive-	RWV	= reverse working
A. F. C.	= automatic frequency control	HEX	= hexagonal		negative	••••	voltage
AMPL	= amplifier	HG	= mercury	NRFR	= not recommended for		·
BFO	= beat frequency oscillator	HR	= hour(s)		field replacement		
BE CU	= beryllium copper	Hz	= hertz	NSR	= not separately	S-B	= slow-blow
BH	= binder head	IF			replaceable	SCR	= Screw
BP	= bandpass		= intermediate freq.		-4	SE	= selenium
BRS	= bandpass = brass	IMPG	= impregnated			SECT	= seremum = section(s)
	= backward wave oscillator	INCD	= incandescent	OBD	 order by description 	SEMICON	= semiconductor
	- Dackwald wave Oscillator	INCL	= include(s)	OH	= oval head	SI	= seniconductor = silicon
	= counter-clockwise	INS	= insulation(ed)	ox	= oxide	SIL	= silver
	= ceramic	INT	= internal			SL	
CMO	= cabinet mount only	k	= kilo = 1000			SPG	= slide
	= coefficient			P	= peak	SPL	= spring
COM	= common	LH	= left hand	PC	= printed circuit		= special
COMP	= composition	LIN	= linear taper	p	= pico = 10 ⁻¹²	SST	= stainless steel
	= complete	LK WASH	= lock washer	PH BRZ	= phosphor bronze	SR	= split ring
CONN	= connector	LOG	= logarithmic taper	PHL	= Phillips	STL	= steel
	= cadmium plate	LPF	= low pass filter	PIV	= peak inverse voltage		
	= cathode-ray tube		•	PNP	= positive-negative-	TA	= tantalum
	= clockwise	m	= milli = 10 ⁻³		positive	TD	= time delay
		M	$= meg = 10^6$	P/O	= part of	TGL	= toggle
	= deposited carbon	MET FLM	= metal film	POLY	= polystyrene	THD	= thread
DR	= drive	MET OX	= metallic oxide	PORC	= porcelain	TI	= titanium
FIFCT	= electrolytic	MFR	= manufacturer	POS	= position(s)	TOL	= tolerance
FNCAD	= electrolytic = encapsulated	MINAT	= miniature	POT	= potentiometer	TRIM	= trimmer
	= encapsulated = external	MOM	= momentary	PP	= peak-to-peak	TWT	= traveling wave tube
	- external	MTG	= mounting	PT	= peak-to-peak = point		
F	= farads	MY	= ''mylar''	PWV	= point = peak working voltage	μ	= micro = 10 ⁻⁶
f :	= femto = 10 ⁻¹⁵				- bear working voirage	VAR	= variable
FH :	flat head	n	= nano = 10 ⁻⁹			VAR	
FIL H	= fillister head	N/C	= normally closed				 dc working volts
	= fixed	NE	= neon	RECT	= rectifier	w/	= with
	= giga = 10 ⁹	NI PL	= nickel plate	RF	= radio frequency	w	= watts
		N/O	= normally open	RH	= round head or	WIV	= working inverse
	germanium	NPO	= negative positive zero		right hand		voltage
	glass		(zero temperature	RMO	= rack mount only	ww	= wirewound
JUD :	ground(ed)		coefficient)	RMS	= root-mean square	w/o	= without

The total quantity for each part is given only once—at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION

- 6-8. To order a part listed in the replaceable parts table, give the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, state the full instrument model and serial number, and description and function of the part, and the number of parts required. Address your order to the nearest Hewlett-Packard office.

6-10. DIRECT MAIL ORDER SYSTEM

- 6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are:
 - a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
 - b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP Office when the orders require billing and invoicing).
 - c. Prepaid transportation (there is a small handling charge for each order).
 - d. No invoices—to provide these advantages, a check or money order must accompany each order.
- 6-12. Mail order forms and specific ordering information are available through your local HP Office. Addresses and phone numbers are located at the back of this manual.

Table 6-2. Manufacturers Code Lists

MFR NO.	MANUFACTURER NAME	ADDRESS		ZIP CODE
00000 01121 011295 02111 03508 04713 05574 07263 14935 24546 27014 27167 28480 3L585 30983 34649 52763 56289 74970 75042 75915	ANY SATISFACTORY SUPPLIER ALLEN-BRADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIV SPECTROL ELECTRONICS CORP GE CO SEMICONDUCTOR PROD DEPT MOTOROLA SEMICONDUCTOR PRODUCTS VIKING INDUSTRIES INC FAIRCHILD SEMICONDUCTOR DIV GENERAL INSTR CORP SEMICON PROD GP ANALOG DEVICES INC CORNING GLASS WORKS (BRADFORD) NATIONAL SEMICONDUCTOR CORP CORNING GLASS WORKS (WILMINGTON) HEWLETT-PACKARD CO CORPORATE HQ RCA CORP SOLID STATE DIV MEPCO/ELECTRA CORP INTEL CORP STETINER-TRUSH INC SPRAGUE ELECTRIC CO JOHNSON E F CO TRW INC PHILADELPHIA DIV LITTELFUSE INC	MILWAUKEE DALLAS CITY OF IND AUBURN PHOENIX CHATSWORTH MOUNTAIN VIEW HICKSVILLE NORWOOD BRADFORD SANTA CLARA WILMINGTON PALO ALTO SOMERVILLE SAN DIEGO MOUNTAIN VIEW CAZENOVIA NORTH ADAMS WASECA PHILADELPHIA DES PLAINES	WIXAYZAAYAAACCNAAYAAACCNAAYAAACCNAAYAAACCNAAYAAAACCNAAYAAAACCNAA	53204 75222 91745 13201 85008 91311 94042 11802 02062 16701 95051 28401 94304 92121 95051 13035 01247 56093 19108 60016

AT Bid Replaneable Forte is

A1	04277-66511	3	1	PCB AY-CTL-LOGIC		04277-66511
A1 C1	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C2	0180-1085	5	1			242M2502 475M2
A1 C3	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C4	0180-1085	5	1			242M2502 475M2
A1 C5	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
05	0.00	_	·			
A1 C6	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C7	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C8	0180-0197	8	1	CAP-FXD 2.2uf +-10% 20 V TA	K7253	TAAA2R2K2ORX
A1 C9	0160-4832	4	1	CAP-FXD 0.01uF +-10% 100 V CER X7R		RPA10X7R103K100V
A1 C10	0180-1075	3	1	CAP-FXD 2200uF +-20% 16 V AL-ELCTLT		0180-1075
A1 C11	0160-4801	7	1	CAP-FXD 100pF +-5% 100 V CER COG		RPA10C0G101J100V
A1 C12	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C13	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C14	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C15	0180-4156	7	1	CAP-FXD 33uF +-20% 16 V AL-ELCTLT		0180-4156
A1 C16	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C17	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C18	0180-1085	5	1	CAP-FXD 4.7uF +-20% 25 V TA		242M2502 475M2
A1 C19	0160-4832	4	1	CAP-FXD 0.01uF +-10% 100 V CER X7R		RPA10X7R103K100V
A1 C20	0180-3590	1	1	CAP-FXD 470uF +-20% 10 V AL-ELCTLT		0180-3590
A1 C21	0180-3590	1	1	CAP-FXD 470uF +-20% 10 V AL-ELCTLT		0180-3590
A1 CR1	1901-0539	3	1	DIODE-SCHOTTKY SM SIG		A2X355
A1 CR2	1901-0539	3	1			A2X355
AT ORE	1701 0337	•	•	DIODE CONCINCT ON CIT		ALAGO
A1 I1	0340-0092	2	1	TERMINAL-STUD SPCL-FDTHRU PRESS-MTG	05276	011-6808-00-0-209
A1 I2	0340-0092	2	1	TERMINAL-STUD SPCL-FDTHRU PRESS-MTG	05276	011-6808-00-0-209
A1 J1	1200-0607	0	1	SOCKET-IC-DIP 16-CONT DIP DIP-SLDR		DILB16P-308T
A1 J2	1200-0607	0	1	SOCKET-IC-DIP 16-CONT DIP DIP-SLDR		DILB16P-308T
A1 J4	1200-0567	1	1	SOCKET-IC-DIP 28-CONT DIP DIP-SLDR		D1LB28P-308T
A1 J12	1200-0541	1	1	SOCKET-IC-DIP 24-CONT DIP DIP-SLDR		DILB24P-308T
A1 J13	1200-0541	1	1	SOCKET-IC-DIP 24-CONT DIP DIP-SLDR		DILB24P-308T
A1 J15	1200-1326	2	1	SOCKET-IC-DIP 32-CONT DIP DIP-SLDR	06776	ICT-326-S-TT
A1 Q1	1854-0810	2	1	TRANSISTOR NPN SI TO-92 PD=625MW		1854-0810
A1 Q2	1854-0810	2	1	TRANSISTOR NPN SI TO-92 PD=625MW		1854-0810
A1 Q3	1853-0281	9	1			1853-0281
A1 Q4	1854-0810	2	1	TRANSISTOR NPN SI TO-92 PD=625MW		1854-0810
A1 Q5	1853-0015	7	1	TRANSISTOR PNP SI PD=200MW FT=500MHZ		1853-0015
A1 R1	1810-0488	8	1	NETWORK-RES 8-SIP 4.7K OHM X 4	C1433	750-83-R4.7K
A1 R2	0757-0199	3	1		91637	CMF-55-1
A1 R3	2100-3103	6	1		73138	89PR10K
A1 R4	0757-0440	7	1		91637	CMF-55-1
A1 R5	0698-3441	8	1	RESISTOR 215 +-1% .125W TF TC=0+-100	91637	CMF-55-1
44.54	0757 0000	7	_	DEGLOTOD 4V . 49V 40EU TE TO-0. 400	01/77	our EE 4
A1 R6	0757-0280	3	1	RESISTOR 1K +-1% .125W TF TC=0+-100	91637	CMF-55-1

A1 R7	1810-0607	3	1	NETWORK-RES 8-SIP 47.0K OHM X 4		RAS-G-4734C
A1 R8	0757-0465	6	1	RESISTOR 100K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R9	0698-3454	3	1	RESISTOR 215K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R10	0757-0346	2	1	RESISTOR 10 +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R11	0757-0280	3	1	RESISTOR 1K +-1% .125W TF TC=0+-100	91637	CMF-55-1
		_	_			
A1 R12	0757-0395	1	1	RESISTOR 56.2 +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R13	0683-0565	0	1	RESISTOR 5.6 +-5% .25W CF TC=0-400		(CR-25) 1-4-5P-5E6
A1 R14	0757-0280	3	1	RESISTOR 1K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R15	1810-0305	8	1	NETWORK-RES 9-SIP 4.7K OHM X 8	11236	750-91-R4.7
A1 R16	1810-0305	8	1	NETWORK-RES 9-SIP 4.7K OHM X 8	11236	750-91-R4.7
A1 R17	1810-0269	3	1	NETWORK-RES 9-SIP 10.0K OHM X 8	56289	216CJ104
A1 R18	1810-0305	8	1	NETWORK-RES 9-SIP 4.7K OHM X 8	11236	750-91-R4.7
A1 R19	1810-0305	8	1	NETWORK-RES 9-SIP 4.7K OHM X 8	11236	750-91-R4.7
A1 R20	1810-0305	8	1	NETWORK-RES 9-SIP 4.7K OHM X 8	11236	750-91-R4.7
A1 R21	0698-3155	1	1	RESISTOR 4.64K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R22	0698-3155	1	1	RESISTOR 4.64K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R23	0698-3155	1	1	RESISTOR 4.64K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R24	0757-0279	0	1	RESISTOR 3.16K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R25	0757-0439	4	1	RESISTOR 6.81K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R26	0698-3155	1	1	RESISTOR 4.64K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R27	0698-3155	1	1	RESISTOR 4.64K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R28	0698-3155	1	1	RESISTOR 4.64K +-1% .125W TF TC=0+-100	91637	CMF-55-1
A1 R30	8159-0005	0	1	RESISTOR 0 CWM	55210	L-2007-1
41 01	7404 2005	2		CHITCH DID CL 7 14 0 14 FOUR	VE240	DCC 707
A1 S1	3101-2885	2	1	SWITCH-DIP SL 7-1A 0.1A 50VDC	K5260	DSS 707
A1 TP1	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP2	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP3	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP4	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP5	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
AT IFS	0300 1033	,	'	CONNECTOR SGE CONT FIN .043-IN-BSC-S2 SW	04374	W151-045-575Q
A1 TP6	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP7	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP8	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP9	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP10	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP11	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP12	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-3750
A1 TP14	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP15	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
A1 TP16	0360-1653	5	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ	04574	W151-045-375Q
44 114	4047 0004	_		10 % 714 44 524		4047 0004
A1 U1	1813-0291	7	1	IC X-TAL 11.52M		1813-0291
A1 U2	1826-0978	4	1	IC MISC 8 PIN DIP-P		1826-0978
A1 U3	1826-0180	0	1	IC TIMER GP 8 PIN DIP-P	P • • • •	1826-0180
A1 U4	1820-2649	8	1	IC-MPU; CLK FREQ=6 MHZ; RAM REFRESH	50088	Z8400BB1N
A1 U5	04277-85102	8	1	PROM 77-66511		04277-85102
A1 U12	1818-3183	2	1	IC 64K SRAM 150-NS CMOS		1818-3183
A1 U13	1820-2024	3	1	IC DRVR TTL/LS BUS OCTL		1820-2024
A. 015	1020 2024	,	•	JAVA TIE/ES BOS OCIE		1020 2024

A1	U14	1820-2024	3	1	IC DRVR TTL/LS BUS OCTL		1820-2024
A1	U15	1820-1730	6	1	IC FF TTL/LS D-TYPE POS-EDGE-TRIG COM		1820-1730
A1	U16	1820-1217	4	1	IC MUXR/DATA-SEL TTL/LS 8-TO-1-LINE	s0167	MB74LS151M
A1	U17	1820-1197	9	1	IC GATE TTL/LS NAND QUAD 2-INP	S4013	HD74LS00P
A1	U18	1820-1112	8	1	IC FF TTL/LS D-TYPE POS-EDGE-TRIG	s401 3	HD74LS74AP
A1	U19	1820-1197	9	1	IC GATE TTL/LS NAND QUAD 2-INP	s401 3	HD74LS00P
A1	U20	1820-0682	5	1	IC GATE TTL/S NAND QUAD 2-INP		1820-0682
A1	U21	1820-1197	9	1	IC GATE TTL/LS NAND QUAD 2-INP	s4013	HD74LS00P
A1	U23	1820-1199	1	1	IC INV TTL/LS HEX 1-INP	S4013	HD74LS04P
A1	U24	1820-0681	4	1	IC GATE TIL/S NAND QUAD 2-INP	27014	DM74S00N
A1	U25	1820-2150	6	1	IC-PROGRAMMABLE KEYBOARD/DISPLAY	34649	D8279-5
A1	U26	1820-1216	3	1	IC DCDR TTL/LS BIN 3-TO-8-LINE 3-INP	s4013	HD74LS138P
A1	U27	1820-1112	8	1	IC FF TTL/LS D-TYPE POS-EDGE-TRIG	s4013	HD74LS74AP
A1	U28	1820-1112	8	1	IC FF TTL/LS D-TYPE POS-EDGE-TRIG	s4013	HD74LS74AP
A1	U29	1820-1420	1	1	IC CNTR TTL/LS DIV-X-12 ASYNCHRO		1820-1420
A1	U30	1820-1432	5	1	IC CNTR TTL/LS BIN SYNCHRO POS-EDGE-TRIG		1820-1432
A1	u31	1820-1432	5	1	IC CNTR TTL/LS BIN SYNCHRO POS-EDGE-TRIG		1820-1432
A1	U 3 2	1820-1112	8	1	IC FF TTL/LS D-TYPE POS-EDGE-TRIG	S4013	HD74LS74AP
A1	U33	1820-1199	1	1	IC INV TTL/LS HEX 1-INP	S4013	HD74LS04P
A1	U34	1820-2075	4	1	1C TRANSCEIVER TTL/LS BUS OCTL		1820-2075
A 1	U 3 5	1820-1216	3	1	IC DCDR TTL/LS BIN 3-TO-8-LINE 3-INP	s401 3	HD74LS138P
A1	U 3 6	1820-1624	7	1	IC BFR TTL/S OCTL 1-INP		1820-1624
A1	u37	1820-1199	1	1	IC INV TTL/LS HEX 1-INP	S4013	HD74LS04P
A1	U38	1820-1197	9	1	IC GATE TTL/LS NAND QUAD 2-INP	S4013	HD74LS00P
A1	U39	1820-4356	8	1	IC-PROGRAMMABLE INTERVAL TIMER		MSM82C53-2RS
A1	U41	1820-1216	3	1	IC DCDR TTL/LS BIN 3-TO-8-LINE 3-INP	s4013	HD74LS138P
A1	U42	1820-1112	8	1	IC FF TTL/LS D-TYPE POS-EDGE-TRIG	S401 3	HD74LS74AP
A1	U43	1820-1425	6	1	IC SCHMITT-TRIG TTL/LS NAND QUAD 2-INP		1820-1425
A1	U44	1826-0122	0	1	IC V RGLTR-FXD-POS 4.8/5.2V TO-220 PKG		1826-0122
A1	W1	1251-4822	6	1	CONN-POST TYPE .100-PIN-SPCG 3-CONT	18873	68024-403
A1	W2	1251-4822	6	1	CONN-POST TYPE .100-PIN-SPCG 3-CONT	18873	68024-403
A1	W3	1251-4822	6	1	CONN-POST TYPE .100-PIN-SPCG 3-CONT	18873	68024-403

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
		Н				
A 1	04277-66501	1	1	LOGIC BOARD ASSEMBLY	28480	04277-66501
91 C1 91 C2 91 C3 91 C4 91 C5	0180-1085 0180-1085 0180-1085 0180-1085 0180-1085	មានមានមា	13	CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA	28480 28480 28480 28480 28480	0180-1085 0180-1085 0180-1085 0180-1085 0180-1085
91C6 91C7 91C8 91C9 91C10	0180-1865 0180-1085 0180-0197 0160-4832 0180-3219	5 5 8 4 1	1 2/1	CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 2200UF +-20% 6.3VDC AL	28480 28480 56289 28480 28480	0180-1885 0180-1085 150D225X9020A2 0160-4832 0180-3219
91.011 91.012 91.013 91.014 91.015	0160-4801 0180-1085 0180-1085 0180-1085 0180-2951	75556	1	CAPACITOR-FXD 180PF +5% 180VDC CER CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 33UF+20% 16VDC AL	28480 28480 28480 28480 28480	0160-4801 0180-1985 0180-1085 0180-1085 0180-2951
A1C16 A1C17 A1C18 A1C19 A1C20	0180-1085 0180-1085 0180-1085 0180-4832 0180-3217	55549	2	CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 470UF	28 48 0 28 48 0 28 48 0 28 48 0 28 48 0	0180-1085 0180-1085 0180-1085 0160-4832 0180-3217
A1 C21	0180~3217	9		CAPACITOR-FXD 470UF	28480	0180-3217
A1CR1 A1CR2	1901-0539 1901-0539	3	2	DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY	28480 28488	1901-0539 1901-0539
A1J1 A1J2 A1J3 A1J10	1200-0607 1200-0607 1200-0654 1200-0541	0 0 7 1	2	SOCKET-IC 16-CONT DIP D1P-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR	28480 28480 28480 28480	1200-0607 1200-0607 1200-0654 1200-0541
A1J11 A1J12 A1J13 A1J14	1200-0541 1200-0541 1200-0541 1200-0654	1 1 1 7		SOCKETHIC 24-CONT DIP DIPHSLDR SOCKETHIC 24-CONT DIP DIPHSLDR SOCKETHIC 24-CONT DIP DIPHSLDR SOCKETHIC 40-CONT DIP DIPHSLDR	28480 28480 28480 28480	1200-0541 1206-0541 1200-0541 1200-0654
A1Q1 A1Q2 A1Q3 A1Q4 A1Q5	1854-0810 1854-0810 1853-0281 1854-0810 1853-0015	2 9 2 7	1	TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR PNP 2N2907A SI TO-18 PD=400MW TRANSISTOR PNP SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=200MW FT=500MHZ	28480 28480 04713 28480 28480	1654-0810 1854-0810 2N2707A 1854-8810 1853-0815
A1R1 A1R2 A1R3 A1R4 A1R5	1810-0488 0757-0199 2100-3103 0757-0440 0683~2215	8 3 6 7 1	1 1 1 1	NETWORK-RES 8-SIP4.7K OHM X 4 RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR-TRMR 10K 10% C SIDE-ADJ 17-TRN RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 220 5% .25W FC TC=-400/+600	28480 24546 02111 24546 01121	1810-0488 C4-1/8-T0-2152-F 43F103 C4-1/8-T0-7501-F CB2215
A1R6 A1R7 A1R8 A1R9 A1R10	0683-4715 1810-0607 0683-1045 0683-2245 0683-1005	0 3 3 7 5	1 1 1	RESISTOR 470 5% .25W FC TC=-400/+600 RESISTIVE NETWORK- SIP RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 220K 5% .25W FC TC=-800/+900 RESISTOR 10 5% .25W FC TC=-400/+500	01121 28480 01121 01121 91121	CB4715 1810-0607 CB1045 CR2245 CB1005
A1R11 A1R12 A1R13 A1R14 A1R15	0683-1025 0683-5605 0683-0565 0683-1025 1810-0305	9 9 9 8 9	2 1 1 1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 56 5% .25W FC TC=-400/+500 RESISTOR 5.6 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 NETWORK-RES 9-SIP 4.7K OHM X8	01121 01121 01121 01121 28480	CR1025 CB5605 CB0565 CB1025 1810-0305
A1R16 A1R18 A1R19 A1R20 A1R21 A1R22 A1R23 A1R23 A1R24 A1R25 A1R26 A1R26	1810-0305 1810-0305 1810-0305 1810-0305 1810-0305 0683-4725 0683-4725 0683-3325 0683-6825 0683-4725 0683-4725	8 3 8 8 8 8 2 2 2 6 7 2 2		NETWORK-RES 9-SIP 4.7K OHM X8 NETWORK-RES 9-SIP10.0K OHM X 8 NETWORK-RES 9-SIP 4.7K OHM X 8 NETWORK-RES 9-SIP 4.7K OHM X 8 NETWORK-RES 9-SIP 4.7K OHM X 8 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700	28480 28480 28480 28480 01121 01121 01121 01121 01121 01121 01121	1810-0305 1810-0269 1810-0305 1810-0305 1810-0305 CB4725 CB4725 CB4725 CB3325 CB6925 CB4725 CB4725 CB4725
A1S1	3101~1973	7	1	SWITCH-SL 7-1A DIP-SLIDE-ASSY ,1A 50VDC	28480	3101-1973

Table 6-3. Replaceable Parts

A1U1 A1U2 A1U3 A1U4 A1U5	1813-0291				Code	Mfr Part Number
H103	1826-0978 1826-0180 1820-2649 04276-85011	7 4 0 8 5	. 1 1 1 1	IC-CRYSTAL 11.52 M IC (MISC) IC TIMER TIL MONO/ASTBL IC- ZBOB-CPU PROM-PROGRAMMED	28480 28480 01295 28480 28480	1913-0291 1926-0978 NE555P 1820-2649 04276-85011
A1U6 A1U7 A1U8 A1U9 A1U10	04277-85012 04277-85003 04276-85004 04276-85005 04276-85016	6 7 8 9	1 1 1 1	PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED	28480 28480 28480 28480 28480	04277-85012 04277-85003 04276-85004 04276-85005 04276-85016
A1U12 A1U13 A1U14 A1U15 A1U16	1818-1974 1820-2024 1820-2024 1820-1730 1820-1217	5 3 3 6 4	1 2 1 1	IC-MSM5128-15 IC DRVR TTL LS LINE DRVR OSTL IC DRVR ITL LS LINE DRVR OSTL IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC MUXR/DATA-SEL TTL LS 8-TO-1-LINE	28480 01295 01295 01295 01295	1818-1974 SN74L5244N SN74L5244N SN74L5273N SN74L5273N
A1U17 A1U18 A1U19 A1U20 A1U21	1820-1197 1820-1112 1820-1197 1820-0682 1820-1197	9 8 9 5 9	4 5 1	IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL S NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP	01295 01295 01295 01295 01295	SN74LS00N SN74LS74AN SN74LS00N SN74S03N SN74LS00N
A1U22 A1U23 A1U24 A1U25 A1U26	1820-1216 1820-1199 1820-0681 1820-2150 1820-1216	3 1 4 6 3	4 3 1 1	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC INV TTL LS HEX 1-INP IC GATE ITL S NAND QUAD 2-INP IC MICPROC-ACCESS NNOS IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 01295 01295 34649 01295	SN74LS13BN SN74LS04N SN74S0BN D8279-5 SN74LS13BN
A1 U27 A1 U28 A1 U29 A1 U30 A1 U31	1820~1112 1820~1112 1820~1420 1820~1432 1820~1432	8 4 5 5	1 2	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC CNTR TTL LS DIV-X-12 ASYNCHRO IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295 81295 01295 01295 01295	SN74LS74AN SN74LS74AN SN74LS92N SN74LS163AN SN74LS163AN
A1U32 A1U33 A1U34 A1U35 A1U36	1820-1112 1820-1199 1820-2075 1820-1216 1820-1624	B 1 4 3 7	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC INV TTL LS HEX 1-INP IC MISC TTL LS IC DCDR TTL LS 3-TO-8-LINE 3-INP IC BFR TTL S DCTL 1-INP	01295 01295 01295 01295 01295	SN74LS74AN SN74LS94N SN74LS245N SN74LS138N SN74S241N
A1 U37 A1 U3B A1 U39 A1 U41 A1 U42	1820-1199 1820-1197 1820-2873 1820-1216 1820-1112	1 9 0 3 8	1	IC INV TTL LS HEX 1-INP IC GATE TTL LS NAND QUAD 2-INP IC-UPBB253-5 IC DCDR TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 28480 01295 01295	SN74LS04N SN74LS08N 1820-2873 SN74LS136N SN74LS74AN
A1U43 A1U44	1820-1425 1826-0122	6	1 1	IC SCHMITT-TRIG TTL LS NAND QUAD 2-INP IC 7805 V RGLTR TO-220	01295 07263	SN74LS132N 7805UC
A1W1 A1W2 A1W3 A1W4 A1W5	1251-4822 1251-4822 1251-4822 1251-4787 8159-0005	99980	3 1 1	CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE SHUNT-DIP 8-POSITION RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480 28480 28480 28480 28480	1251-4822 1251-4822 1251-4822 1251-4787 8159-0005
			_	MISCELLANEOUS PARTS		
	1258-0141 04276-26501 04276-01203	8	3 1 1	JUMPER-REM PC BOARD, BLANK ANGLE (BOARD)	28480 28480 28480	1258-0141 04276-26501 04276-01203
			·			
	0					
	Į.					

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A2		П				
A2	04277-66502	2	1	ANALOG BOARD ASSEMBLY	28490	04277-66502
A201 A202 A203 A204 A205	0160-4814 0180-2951 0180-2951 0180-2951 0160-4814	2 6 6 6 2	13 59	CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 150PF +-5% 100VDC CER	28480 28480 28480 28480 28480	0160-4814 0180-2951 0180-2951 0180-2951 0160-4814
A2C6 A2C7 A2CB A2C9 A2C10	0160-4812 0180-2951 0160-4814 0160-4812 0180-2951	0 6 2 6	4	CAPACITOR-FXD 220PF +-5% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD 220PF +-5% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0160-4812 0180-2951 0160-4814 0160-4812 0180-2951
A2011 A2012 A2013 A2014 A2015	0180-2951 0180-2951 0180-3233 0160-4832 0180-2951	6 6 9 4 6	6 13	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 22 UF 25VDCW CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28488 28480 28480 28480	0180-2951 0180-2951 0180-3233 0160-4832 0180-2951
A2C16 A2C17 A2C18 A2C19 A2C20	0160-4835 0180-2951 0180-2951 0160-4835 0160-5499	7 6 6 7 1	18	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR- 0.22UF 100VDC F	28480 28480 28480 28480 28480	0160-4835 0180-2951 0180-2951 0160-4835 0160-5499
A2C21 A2C22 A2C23 A2C24 A2C25	0160-4835 0180-2951 0180-2951 0180-2951 0180-2951	7 6 6 6		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0160-4835 0180-2951 0180-2951 0180-2951 0180-2951
A2C26 A2C27 A2C28 A2C29 A2C30	0180-2951 0160-4835 0160-4814 0160-4832 0160-4832	6 7 2 4 4		CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER	28480 28480 28480 28480 28480	0180-2951 0160-4835 0160-4814 0160-4832 0160-4832
A2031 A2032 A2033 A2034 A2035	0180-1086 0180-2951 0180-2951 0180-2951 0180-2951	66666	4	CAPACITOR- 33 UF 16VDCW CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0186-1086 0180-2951 0180-2951 0180-2951 0180-2951
A2C36 A2C37 A2C38 A2C39 A2C40	0160-4814 0180-2951 0180-2951 0180-1086 0160-5502	26667	2	CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR- 33 UF 16VDCW CAPACITOR- 1 UF 63 VDC F	28480 28480 28480 28480 28480	3160-4814 0180-2951 0180-2951 0180-1186 0160-5502
A2C41 A2C42 A2C43 A2C44 A2C45	0160-5502 0160-4832 0180-3233 0180-3233 0180-3233	7 4 9 9 9		CAPACITOR- 1 UF 63 VDC F CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 22 UF 25VDCW CAPACITOR-FXD 22 UF 25VDCW CAPACITOR-FXD 22 UF 25VDCW	28480 28480 28480 28480 28480	0160-5502 0160-4932 0180-3233 0180-3233 0180-3233
A2C46 A2C47* A2C48 A2C49* A2C50	0121-0059 0160-5595 0160-5592 0121-0453	785	1 2 1	CAPACITOR-V TRMR-CER 2-8PF 350V PC-MTG CAPACITOR- 2 PF +/5 PF CAPACITOR- 10PF +/5 PF OPEN CAPACITOR-V TRMR-AIR 1.3-5.4PF 175V	52763 28480 28480 74970	304324 2/8PF NPO 0160-5595 0160-5592 187-0303-125
A2C51 A2C52 A2C53 A2C54 A2C55	0160-5599 0180-2951 0180-2951 0180-2951 0180-1086	36666	2.	CAPACITOR-0.1 UF 5% F CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 3UF+-20% 16VDC AL CAPACITOR-33 UF 16VDCW	28480 28480 28480 28480 28480	0160-5599 0180-2951 0180-2951 0180-2951 0180-1086
A2C56 A2C57 A2C58 A2C59 A2C60	0160-4832 0180-2951 0180-2951 0160-4832 0160-4791	4 6 6 4 4		CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 10PF +-5% 100VDC CER 0+-30	28480 28480 28480 28480 28480	0160-4832 0180-2951 0180-2951 0160-4832 0160-4791
A2C61 A2C62 A2C63 A2C64 A2C65	0160-5499 0160-4814 0160-4812 0180-2951 0180-2951	1 2 0 6 6		CAPACITOR- 0.22UF 100VDC F CAPACITOR-FXD 150PF +-52 100VDC CER CAPACITOR-FXD 220PF +-52 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0160-5479 0160-4814 0160-4812 0180-2951 0180-2951
A2C66 A2C67 A2C68 A2C69 A2C70	0160-4832 0160-4814 0160-5499 0160-4795 0180-2951	4 2 1 8 6	3	CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-0.22UF 100VDC F CAPACITOR-FXD 4.7PF +5PF 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480 28488	0160-4832 0160-4814 0160-5549 0160-4795 0180-2951

Table 6-3. Replaceable Parts

	Table b-3. Heplaceable Parts							
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
A2C71 A2C72 A2C73 A2C74 A2C75	0180-2951 0160-4801 0160-4814 0180-1086 0160-0263	6 7 2 6 7	2	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR- 33 UF 16VDCW CAPACITOR- 30 UF 16VDCW CAPACITOR-FXD .22UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0180-2951 0169-4801 0160-4814 0180-1086 0160-0263		
A2C76 A2C77 A2C78 A2C79 A2C80	0160-4846 0160-4814 0160-4835 0160-4835 0160-4795	0 2 7 7 8	1	CAPACITOR-FXD 1500PF +-5% 100VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 4.7PF +5PF 100VDC CER	28480 28480 28480 28480 28480	0160-4846 0160-4814 0160-4835 0160-4835 0160-4835		
A2C81 A2C82 A2C83 A2C84 A2C85	0160-4809 0160-4806 0160-4835 0121-0036 0180-2951	5 2 7 0 6	1 1 2	CAPACITOR-FXD 390PF +-5% 100VDC CER CAPACITOR-FXD 39PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-V TRNK-CER 5.5-18PF 350V CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 52763 28480	0160-4809 0160-4806 0160-4835 364324 5.5/18PF NPO 0180-2951		
A2C86 A2C87 A2C88 A2C89 A2C90	0180-2951 0180-2951 0180-2951 0180-2951 0180-2951	6 6 6		CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0180-2951 0180-2951 0180-2951 0180-2951 0180-2951		
A2091 A2092 A2093 A2094 A2095	0160-4832 0180-2951 0180-2951 0160-4832 0160-4832	4 6 6 4 4		CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER	28480 28489 28480 28480 28480	0160-4832 0180-2951 0180-2951 0160-4832 0160-4832		
A2C96 A2C97 A2C98* A2C99 A2C100	0160-4832 0160-4832 0160-4794 0121-0036 0160-5143	4 4 7 0 2	1	CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 5.6PF +5PF 100VDC CER CAPACITOR-V TRNR-CER 5.5-18PF 350V CAPACITOR-V TNR-CER 5.5-18PF 350V	28480 28480 28480 52763 28480	0160-4832 0160-4832 0160-4774 304324 5.5/18PF NPO 0160-5143		
A2C101 A2C102 A2C103 A2C104 A2C105	0160-2234 0160-4814 9160-5499 0160-4801 0180-2951	6 2 1 7 6	1	CAPACITOR-FXD .51PF +25PF 500VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR- 0.22UF 100VDC F CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL.	28480 28480 28480 28480 28480	0160-2234 0160-4914 0160-5499 0160-4801 0180-2951		
A2C106 A2C107 A2C108 A2C109 A2C110	0180-2951 0160-4835 0160-4835 0180-2951 0180-2951	6 7 7 6 6	:	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28488 28480 28488 28480 28480	0180-2951 0160-4835 0160-4835 0180-2951 0180-2951		
A20111 A20112 A20113 A20114 A20115	0188-2951 0160-4795 0160-4814 0160-0575 0160-4805	6 8 2 4 1	1 1	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 4.7PF +5PF 100VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD .047UF +-20% 50VDC CER CAPACITOR-FXD 47PF +-5% 180VDC CER 0+-30	28480 28480 28480 28480 28480	0180-2951 0160-4795 0160-4814 0160-0575 0160-4805		
A2C116 A2C117 A2C118* A2C119 A2C120	0160-4822 0160-4832 0160-4790 0180-2951 0180-2951	24366	1	CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 12PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0160-4822 0160-4832 0160-4790 0180-2951 0188-2951		
A20121 A20122 A20123 A20124 A20125	0160-4835 0160-4835 0160-4814 0160-4835 0160-4814	77272		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER	28480 28480 28480 28480 28480	0160-4835 0160-4835 0160-4814 0160-4835 0160-4814		
A20126 A20127 A20128 A20129 A20130	0160-4835 0180-2951 0180-2951 0160-5494 0160-0160	7 6 6 6 3	2 1	CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 2.2 UF 5% 100VDC CAPACITOR-FXD 8200PF +-10% 200VDC POLYE	28480 28480 28480 28480 28480	0160~4835 0180~2951 0180~2951 0160~5494 0160~6160		
A20131 A20132 A20133 A20134 A20135	0160-5498 0160-5497 0180-2951 0180-2951 0160-4835	9 6 6 7	1	CAPACITOR- 0.01UF 58VDC F CAAPACITOR- 33 NF 100VDC F CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .1UF +-18% 50VDC CER	28480 28480 28480 28488 28480	0160-5498 0160-5497 0180-2951 0180-2951 0160-4835		
A2C136 A2C137 A2C138 A2C139 A2C148	0160-4835 0180-3233 0180-3233 0160-2951 0180-2951	7 9 9 6 6		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 22 UF 25VDCW CAPACITOR-FXD 22 UF 25VDCW CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0160-4835 0180-3233 0180-3233 0180-2951 0180-2951		
A2C141* A2C142 A2C143 A2C144 A2C145	0160-4791 0160-5599 0180-2951 0180-2951 0180-2951	4 3 6 6 6	2	CAPACITOR-FXD 10PF +-5% 100VDC CER 0+-30 CAPACITOR-0.1 UF 5% F CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0160-4791 0160-5599 0180-2951 0180-2951 0180-2951		

Table 6-3. Replaceable Parts

	l able 6-3. Replaceable Parts								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A2C146 A2C147 A2C149 A2C150 A2C151	0180-2951 0160-4830 0160-4835 0180-2951 0160-5501	62766	1	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 2200FF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 100VDC F	28480 28480 28480 28480 28480	0180-2951 0160-4835 0160-4835 0180-29751 0160-5501			
A2C152* A2C153* A2C154* A2C155 A2C156	0160-5595 0160-5596 0160-5592 0160-5494 0160-0127	89562	1 2 1	CAPACITOR- 2 PF +/5 PF CAPACITOR- 3 PF +/5 PF CAPACITOR- 10PF +/5 PF CAPACITOR-FXD 2.2 UF 5% 100VDC CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-5595 0160-5596 0160-5592 0160-5494 0160-0127			
A2C157 A2C158 A2C159 A2C160 A2C161	0160-4835 0180-2951 0180-2951 0160-4812 0160-4835	7 6 6 0 7		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 220FF +-5% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 28480 28480 28480 28480	0160-4835 0180-2951 0180-2951 0160-4812 0160-4835			
A2C162	0180-2951	6		CAPACITOR-FXD 33UF+-20% 16VDC AL	29490	0180-2951			
A2CR1 A2CR2 A2CR3 A2CR4 A2CR5	1902-0041 1902-0041 1902-3059 1902-3059 1902-3059	4 4 0 0	2	DIODE-ZNR 5.11V 5% DD-35 PD=.4W DIODE-ZNR 5.11V 5% DD-35 PD=.4W DIODE-ZNR 3.83V 5% DD-35 PD=.4W DIODE-ZNR 3.83V 5% DD-35 PD=.4W DIODE-ZNR 3.83V 5% DD-35 PD=.4W	28480 28480 28480 28480 28480	1902-0041 1902-0041 1902-3059 1902-3059 1902-3059			
A2CR6 A2CR7 A2CR8 A2CR9 A2CR10	1902-3059 1901-0033 1901-0033 1902-3062 1902-3082	0 2 2 9	9	DIODE-ZNR 3.83V 5% DO-35 PD=.4W DIODE-GEN PRP 18DV 200MA DO-7 DIODE-GEN PRP 18DV 200MA DO-7 DIODE-ZNR 4.64V 5% DO-35 PD=.4W DIODE-ZNR 4.64V 5% DO-35 PD=.4W	26480 28480 26480 28480 28480	1902-3059 1901-0033 1901-0033 1902-3082 1902-3082			
A2CR11 A2CR12 A2CR13 A2CR14 A2CR15	1901-0033 1901-0033 1901-0040 1901-0040 1901-0040	2 1 1 1	11	DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0040 1901-0040 1901-0040			
A2CR16 A2CR17 A2CR18 A2CR19 A2CR20	1901-0040 1901-0033 1901-0033 1901-0040 1901-0040	1 2 2 1		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0033 1901-0033 1901-0040 1901-0040			
A2CR21 A2CR22 A2CR23 A2CR24 A2CR25	1901-0040 1901-0040 0122-0153 1901-0040 1981-0040	1 1 4 1	1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-VVC 500PF +-10% PD=100MN DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 0122-0153 1901-0040 1901-0040			
A2CR26 A2CR27 A2CR28 A2CR29 A2CR30	1901-0040 1902-3082 1902-3082 1901-0033 1901-0033	1 9 2 2	į	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 4.64V 5% DO-35 PD=.4W DIODE-ZNR 4.64V 5% DO-35 PD=.4W DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480	1901-0040 1902-3382 1902-3082 1901-0033 1901-0033			
A2K1 A2K2	0490-1269 0490-1269	4	2	RELAY 1C 12VDC-COIL .66A 30VDC RELAY 1C 12VDC-COIL .66A 30VDC	28480 28480	0470-1269 0490-1269			
A2L1 A2L2 A2L3 A2L4* A2L5	9100-1629 9100-1625 9140-0697 9100-2247 9100-0824	4 0 8 4 9	1	INDUCTOR RF-CH-MLD 47UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 33UH 5% .166DX.385LG TRANSFORMER- 100 MH INDUCTOR RF-CH-MLD 100NH 10% .105DX.26LG COIL-CHOKE 100 UH	28480 28480 28480 28480 28480	9100-1629 9100-1625 9140-0697 9100-2247 9100-0824			
A2L6*	9100-2251	0	1	INDUCTOR RF-CH-MLD 220NH 10% .105DX.26LG	28488	9100-2251			
A2Q1 A2Q2 A2Q3 A2Q4 A2Q5	1854-0810 1854-0810 1854-0810 1854-0810 1854-0810	2 2 2 2 2	5	TRANSISTOR NPN SI PD-625MW FT-200MHZ	28480 28480 28480 28480 28480	1654-0810 1654-0810 1654-0810 1654-0810 1654-0810			
A296 A297 A298 A299 A2910	1854-0129 1855-0111 1855-0111 1855-0111 1854-0129	6 8 8 6		TRANSISTOR-NPN 2SC1636 TRANSISTOR-FET 2SK43BD TRANSISTOR-FET 2SK43BD TRANSISTOR-FET 2SK43BD TRANSISTOR-NPN 2SC1636	28480 28480 28480 28480 28480	1854-0129 1655-0111 1855-0111 1855-0111 1854-0129			
A2R1 A2R2 A2R3 A2R4 A2R5	8683-4715 8757-0416 8757-0288 1810-0347 1810-0347	0 7 3 8 8	1 2 1 6	RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 NETWORK-RES 8-SIP2.2K OHM X 4 NETWORK-RES 8-SIP2.2K OHM X 4	81121 24546 24546 01121 01121	CB4715 C4-1/8-T6-511R-F C4-1/8-T0-1001-F 208B222 208B222			
A2R6 A2R7 A2R8 A2R9 A2R10	2100-2574 0683-5615 1810-0347 1810-0347 0683-5615	3 1 8 8		RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN RESISTOR 560 5% .25W FC TC=-400/+600 NETWORK-RES 8-SIP2.2K OHM X 4 NETWORK-RES 8-SIP2.2K OHM X 4 RESISTOR 560 5% .25W FC TC=-400/+600	30903 01121 01121 01121 01121	ET50X501 CB5615 200B222 200B222 CB5615			
		}							

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts	_	
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2R11 A2R12 A2R13 A2R14 A2R15	0693-1035 0683-2265 0683-3325 1810-0478 0683-3305	1 6 6 2	9 1 3 1 1	RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 22M 5% .25W FC TC=-900/+1200 RESISTOR 3.3K 5% .25W FC TC=-400/+700 NETWORK-RES 8-SIP22.0K OHM X 4 RESISTOR 33 5% .25W FC TC=-400/+500	01121 01121 01121 28480 01121	CB1035 CBC265 CB3325 1810-0478 CB3305
A2R16 A2R17 A2R18 A2R19 A2R20	2100-3161 2100-3161 0757-0402 1810-0347 0683-1055	6 1 8 5	2 2 4	RESISTOR-TRMR 20K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 20K 10% C SIDE-ADJ 17-TRN RESISTOR 110 1% .125W F TC=0+-100 NETWORK-RES 8-SIP2.2K OHM X 4 RESISTOR 1M 5% .25W FC TC=-800/+900	02111 02111 24546 01121 01121	43P203 43P203 C4-1/B-T0-111-F 208B222 CB1055
A2R21 A2R22 A2R23 A2R24 A2R25	8683-1855 0757-0438 8757-8416 0757-0433 8698-4428	5 3 9 5	1 1 1	RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 5.11K 1% .125W F TC=0+-180 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 3.32K 1% .125W F TC=0+-100 RESISTOR 226 1% .125W F TC=0+-100	01121 24546 24546 24546 24546	CB1055 CA-1/8-T0-5111-F C4-1/8-T0-511R-F C4-1/8-T0-3321-F C4-1/8-T0-226R-F
AZR26 AZR27 AZR28 AZR29 AZR30	0698-4428 0699-1021 0699-1020 0683-1035 1810-0488	3 8 7 1 8	1 1 1	RESISTOR 1.69K 1% .125W F TC=0+-100 RESISTOR- 100 DHM 5% 1/4W RESISTOR- 470 DHM 1W RESISTOR 10K 5% .25W FC TC=-400/+700 NETWORK-RES 8-SIP4.7K DHM X 4	24546 28480 28480 81121 28480	C41/8-T0-1691-F 0699-1021 06991020 CB1035 1810-0488
A2R31* A2R32 A2R33 A2R34 A2R35	0757-0399 0683-5635 1810-0305 2100-2583 2100-2632	5 5 4 4	1 1 3 1 2	RESISTOR 82.5 1% .125W F TC=0+-100 RESISTOR 56K 5% .25W FC TC=-400/+800 NETWORK-RES 9-SIP4.7K OHM X 8 RESISTOR-TRMR 10 20% C SIDE-ADJ 1-TRN RESISTOR-TRMR 100 10% C SIDE-ADJ 1-TRN	24546 01121 28480 30983 30983	C4-1/B-T0-82R5-F CB5635 1810-0305 ET50X100 ET50X101
A2R36 A2R37 A2R38 A2R39 A2R40	1810-0626 0698-4125 1810-0488 1810-0406 0683-2215	6 7 8 0 1	1 1 1 6	RESISTIVE NETWORK- SIP RESISTOR 953 1% .125W F TC=0+-100 NETWORK-RES 8-SIP4.7K OHM X 4 RESISTOR 220 5% .25W FC TC=-400/+600	28480 24546 28480 01121 01121	1810-0626 C4-1/8-T0-953R-F 1810-0488 208B103 CB2215
A2R41 A2R42 A2R43 A2R44 A2R45	0683-2215 0683-1035 0683-1045 0683-3325 0683-2215	1 1 3 6 1	2	RESISTOR 220 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 220 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB2215 CB1035 CB1045 CB3325 CB2215
A2R46 A2R47 A2R48 A2R49 A2R50	0683-6805 0757-0402 0683-6825 1810-0405 1810-0488	3 1 7 9 8	2 1	RESISTOR 68 5% ,25W FC TC=-400/+500 RESISTOR 110 1% .125W F TC=0+-100 RESISTOR 6.8K 5% .25W FC TC=-400/+700 NETWORK-RES B-SIP470.0 DHM X 4 NETWORK-RES B-SIP4.7K OHM X 4	01121 24546 01121 01121 28480	CBG805 C4-1/B-T0-111-F CBG825 208B471 1810-0488
A2R51 A2R52 A2R53 A2R54 A2R54	0683-1015 0683-1025 0683-1035 0757-0277 0757-0401	7 9 1 8 0	1 4 1	RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	81121 01121 01121 24546 24546	CB1 015 CB1 025 CB1 035 C4-1/8-T0-4992-F C4-1/8-T0-101-F
A2R56 A2R57 A2R58 A2R59 A2R60	2100-2632 0683-1005 0683-1005 0683-1005 0683-1005	45555	6	RESISTOR-TRMR 100 10% C SIDE-ADJ 1-TRN RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500	30983 01121 01121 01121 01121	ET50X101 CB1005 CB1005 CB1005 CB1005
A2R61 A2R62 A2R64 A2R65 A2R66	1810-0620 0683-2215 0683-1055 0683-1055 1810-0488	0 1 5 5	1	RESISTIVE NETWORK- SIP RESISTOR 220 5% .25W FC TC=-400/+600 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 NETWORK-RES 8-SIP4.7K OHM X 4	28480 01121 01121 01121 28480	1810-0620 CB2215 CB1055 CB1055 1810-0488
A2R67 A2R68 A2R69 A2R70 A2R71	0698-3444 0698-4421 0698-4383 1810-0347 1810-0224	1 6 9 8 0	1 1 1	RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 249 1% .125W F TC=0+-100 RESISTOR 53.6 1% .125W F TC=0+-100 NETWORK-RES 8-SIP2.2K OHM X 4 NETWORK-RES 8-SIP33.0K OHM X 4	24546 24546 24546 81121 81121	C4-1/8-T0-316R-F C4-1/8-T0-249R-F C4-1/8-T0-53R6-F 209822 2088333
A2R72 A2R73 A2R74 A2R75 A2R76	0693-2225 0693-1035 1910-0606 0693-2225 0693-1025	3 1 2 3 9	2	RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTIVE NETWORK- SIP RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 28480 01121 01121	CB2225 CB1035 1810-0606 CB2225 CB1025
A2R77 A2R78 A2R79 A2R80 A2R81	0683-3325 0683-6805 0683-1035 2100-2489 2100-2522	6 3 1 9	1 1	RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 68 5% .25W FC TC=-400/+500 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR-TRMR 5K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN	01121 01121 01121 01121 30983 30983	CB3325 CB6805 CB1035 ET50X502 ET50X103
A2R82 A2R83 A2R84 A2R85 A2R85	0683-1025 0683-1515 0683-6825 0683-1045 0683-4745	9 2 7 3 6	1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 150 5% .25W FC TC=-400/+600 RESISTOR 6.8K 5% .25W FC TC=-400/+700 RESISTOR 100K 5% .25W FC TC=-400/+900 RESISTOR 470K 5% .25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB1025 CB1515 CB6B25 CB1045 CB4745

Table 6-3. Replaceable Parts

Table 0-3. Replaceable Parts									
Reference Designation	HP Part Number	СД	Qty	Description	Mfr Code	Mfr Part Number			
A2R86 A2R87 A2R88 A2R89 A2R90	0683-3335 0683-1525 0683-1035 0683-1035 0683-1035	8 4 1 1	1	RESISTOR 33K 5% .25W FC TC=-400/+809 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB3335 CB1525 CB1035 CB1035 CB1035			
A2R91 A2R92 A2R93 A2R94 A2R95	0698~3160 0683-2215 0683-2215 0683-1005 0683-1005	81155	1	RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 220 5% .25W FC TC=-400/+600 RESISTOR 220 5% .25W FC TC=-400/+600 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500	24546 01121 01121 01121 01121	C4-1/8-T9-3162-F CB2215 CB2215 CB1005 CB1005			
A2R96 A2R97* A2R98 A2R99 A2R100	1810-0305 0757-0401 0757-0459 1810-0305 0683-3315	8 8 8 4	2 1 2	NETWORK-RES 9-SIP4.7K DHM X 8 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 56.2K 1% .125W F TC=0+-100 NETWORK-RES 9-SIP4.7K DHM X 8 RESISTOR 330 5% .25W FC TC=-400/+600	28480 24546 24546 28480 81121	1810-0305 C4-1/8-T0-101-F C4-1/8-T0-5622-F 1810-0305 CB3315			
A2R101 A2R102 A2R103 A2R104 A2R105	0698-3157 0699-1819 0698-4157 8699-1019 0698-4157	34545	1 2 2	RESISTOR 19.6K 1% .125W F TC=0+-100 RESISTOR- 7.071K 0.1W RESISTOR 10K .1% .125W F TC=0+-50 RESISTOR- 7.071K 0.1W RESISTOR 10K .1% .125W F TC=0+-50	24546 28480 28480 28480 28480 28480	C4-1/8-T0-1962-F 9699-1819 0698-4157 9699-1819 6698-4157			
A2R106 A2R107	0683-1025 0683-3315	9	!	REGISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 330 5% .25W FC TC=-400/+600	01121 01121	CB1025 CB3315			
A2T1 A2T2 A2T3 A2T4 A2T5	9140-0698 9140-0698 9100-0823 9140-0698 9100-0823	9 9 8 9 8	3	TRANSFORMER TRANSFORMER TRANSFORMER- PULSE 113B1 TRANSFORMER TRANSFORMER- PULSE 113B1	28488 28480 28480 28480 28480	9140-0698 9140-0698 9100-0823 9140-0698 9100-0823			
A2T6	9100-0823 1813-0295	8	4	TRANSFORMER- PULSE 113B1 IC (MISC)	28480 28480	9106-0823 1813-0295			
A2U1 A2U2 A2U3 A2U4 A2U5	1813-0295 1813-0295 1813-0295 1813-0300	1 1 1 9		IC (MISC) IC (MISC) IC (MISC) IC (MISC)	28480 28480 28480 28480 28480	1813-0295 1813-0295 1813-0295 1813-0300			
A2U6 A2U7 A2U8 A2U9 A2U10	1813-0300 1826-0122 5080-3837 1826-0122 1820-0693	9 0 2 0 8	6 1 1	IC (MISC) IC 7805 V RGLTR TO-220 IC V RGLTR TO-220 (SEL) IC 7805 V RGLTR TO-220 IC FF TTL S D-TYPE POS-EDGE-TRIG	28480 07263 04713 07263 01295	1813-0300 2805UC MC7905, 2CT 2805UC SN74S74N			
A2U11 A2U12 A2U13 A2U14 A2U15	1813-0297 1826-0519 1828-0630 1820-1430 1820-1244	3 9 3 3 7		IC (MISC) IC OP AMP LOW-BIAS-H-IMPD 8-DIP-P PKG IC MISC TTL IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC MUXR/DATA-SEL TTL LS 4-TO-1-LINE DUAL	28480 01295 04713 01295 01295	1813-0297 TL071CP MC4044P SN74LS161AN SN74LS153N			
A2U16 A2U17 A2U18 A2U19 A2U20	1820-2885 1820-0683 1826-0122 1813-0301 1813-0301	4 6 0 0		IC- HD74LS390 IC INV TTL S HEX 1-INP IC 7805 V RCL1R TO-220 IC (MISC) IC (MISC)	28488 01295 07263 28480 28480	18202885 SN74504N 7805UC 1813-0301 1813-0301			
A2U21 A2U22 A2U23 A2U24 A2U25	1820-1313 1813-0298 1813-0300 1813-0300 1813-0298	1 4 9 9	2	IC MULTIPLXR 2CHAN-ANLG TRIPLE 16-DIP-P IC (MISC) IC (MISC) IC (MISC) IC (MISC)	31.585 28480 28480 28480 28480	CD40538E 1813-0298 1813-0300 1813-0300 1813-0298			
A2U26 A2U27 A2U28 A2U29 A2U30	1820-1730 5080-3838 1826-0147 1826-0971 1826-0971	6 0 9 7 7	5 3 4	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC V RGLTR TO-220 (SEL) IC 7012 V RGLTR TO-220 IC- UPC7908H IC- UPC7908H	01295 04713 04713 28480 28480	SN74LS273N MC7912CT MC7812CP 1826-0971 1826-0971			
A2U31 A2U32 A2U33 A2U34 A2U35	1826-0146 1826-0146 5080-3838 1826-0147 1820-2111	8 6 9 9	1	IC 7808 V RGLTR TO-220 IC 7898 V RGLTR TO-220 IC V RGLTR TO-220 (SEL) IC 7812 V RGLTR TO-220 IC DPVR TTL INV	04713 04713 04713 04713 04713	MC7808CP MC7808CP MC7912CT MC7812CP SN75468N			
A2U36 A2U37 A2U38 A2U39 A2U40	1820-1314 1813-0299 1813-0300 1813-0300 1813-0300	2 5 9 9	5	IC MULTIPLXR 4-CHAN-ANLG DUAL 16-DIP-P IC (MISC) IC (MISC) IC (MISC) IC (MISC)	3L5B5 28480 28480 28480 28480	C04052BE 1813-0299 1813-0300 1813-0300 1813-0300			
A2U41 A2U42 A2U43 A2U44 A2U45	1813-0308 1820-1313 1820-1313 1813-0299 1820-1313	9 1 1 5 1		IC (MISC) IC MULTIPLXR 2-CHAN-ANLG TRIPLE 16-DIP-P IC MULTIPLXR 2-CHAN-ANLG TRIPLE 16-DIP-P IC (MISC) IC MULTIPLXR 2-CHAN-ANLG TRIPLE 16-DIP-P	28480 3L585 3L585 28489 3L585	1813-0300 CD4053BE CB4053BE 1813-0299 CD4053BE			

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2U46 A2U47 A2U48 A2U49 A2U50	1928-1314 1826-0122 1813-0299 1826-0146 1826-0971	20587		IC MULTIPLXR 4-CHAN-ANLG DUAL 16-DIP-P IC 7805 V RGLTR TD-220 IC (M15C) IC 7808 V RGLTR TD-220 IC- UPC7908H	3L595 07263 28490 04713 28480	CD 4052BE 7805UC 1813-0299 MC7808CP 1826-0971
A2U51 A2U52 A2U53 A2U54 A2U55	1813-0300 1820-1313 1813-0299 1813-0300 1813-0300	9 1 5 9		IC (MISC) IC MULTIPLXR 2-CHAN-ANLG TRIPLE 16-DIP-P IC (MISC) IC (MISC) IC (MISC)	28480 31.585 28480 28480 28480	1813-0300 CD4053BE 1813-0299 1813-0300 1813-0300
A2U56 A2U57 A2U58 A2U59 A2U60	1813-0300 1813-0300 1820-0475 1826-0547 1826-0146	9 9 4 3 8	2 1	IC (MISC) IC (MISC) IC COMPARATOR HS TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD DUAL B-DIP-P IC 7808 V RGLTR TO-220	28480 28480 27014 01295 04713	1813-0300 1813-0300 LM306H TL072ACP MC7808CP
A2U61 A2U62 A2U63 A2U64 A2U65	1826-0971 1820-1313 1820-1730 1820-1730 1813-0299	7 1 6 6 5		IC- UPC7908H IC MULTIPLXR 2-CHAN-ANLG TRIPLE 16-DIP-P IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC (HISC)	28480 3L595 91295 01295 28480	1826-0971 CD40538E SN74L8273N SN74L8273N 1813-0299
A2U66 A2U67 A2U68 A2U69 A2U70	1820-1112 1826-8122 1826-8122 1826-8519 1813-8296	8 0 0 9 2	3	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC 7805 V RGLIR TO-220 IC 7805 V RGLIR TO-220 IC OP AMP LOW-BIAS-H-IMPD 8-DIP-P PKG IC (MISC)	01295 07263 07263 07263 01295 28480	SN74LS74AN 7835UC 788SUC TL871CP 1813-0296
A2U71 A2U72 A2U73 A2U74 A2U75	1813-0296 1813-0296 1820-1469 1820-1112 1820-1975	2 8 1	1 3	IC (MISC) IC (MISC) IC (MISC) IC FF TTL LS J-K NEG-EDGE-TRIG CLEAR IC FF TTL LS D-TYPE POS-EDGE-TRIG IC SHF-RGTR TTL LS NEG-EDGE-TRIG PRL-IN	28480 28480 01295 01295 01295	1813–0296 1813–0296 8N74LS107AN SN74LS74AN SN74LS165N
A2U76 A2U77 A2U78 A2U79 A2U80	1820~1975 1820~1975 5080~3838 1813~0302 5080~3838	1 1 0 1	1	IC SHF-RGTR TTL LS NEG-EDGE-TRIG PRL-IN IC SHF-RGTR TTL LS NEG-EDGE-TRIG PRL-IN IC V RGLTR TO-220 (SEL) IC (MTSC) IC V RGLTR TO-220 (SEL)	01295 01295 04713 28480 04713	SN74LS165N SN74LS165N MC7912CT 1813-0302 MC7912CT
A2U81 A2U82 A2U83	1926-0147 5080-3838 1820-0475	9 0 4		IC 7812 V RGLTR TO-220 IC V RGLTR TO-220(SEL) IC COMPARATOR HS TO-99 PKG	04713 04713 27014	MC7812CP MC7912CT LM306H
A2W1 A2W1 A2W2 A2W3 A2W4	04277-61651 04277-61651 8159-0005 8159-0005 8159-0005	2 0 0	2 : 9	CABLE ASSEMBLY CABLE ASSEMBLY RESISTOR-ZERO DHMS 22 AWG LEAD DIA RESISTOR-ZERO DHMS 22 AWG LEAD DIA RESISTOR-ZERO DHMS 22 AWG LEAD DIA	28480 28480 28480 28480 28480	04277-61651 04277-61651 8159-0005 8159-0005 9159-0005
A2W5 A2W6 A2W7 A2W8 A2W9	8159-0005 8159-0005 8159-8005 8159-0005 8150-0456	0 0 0 0 7	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR-ZERO OHMS 22 AWG LEAD DIA WIRE-24 AWG	28480 28480 28480 28480 28480	8159-0005 8159-0005 8159-0005 8159-0005 8150-0456
A2W11	8159~0005 8159~0005	6 D		RESISTOR-ZERD OHMS 22 AWG LEAD DIA RESISTOR-ZERO CHMS 22 AWG LEAD DIA MISCELLANEOUS PARTS	28480 28480	8159-0005 8159-0005
	04277-00611 84277-00613 04277-00613 04277-00614 04276-01203 04277-26502		1 1 3 3 1 1	PLATE (SHIELD) PLATE (SHIELD) SHIELD COVER SHIELD COVER ANGLE (BOARD) PC BOARD, BLANK	28480 28480 28480 28480 28480 28480	04277-09611 64277-00612 04277-00613 04277-00614 04276-01203 04277-26502
•						

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A4						
A4	0 4277-6650 4	4	1	POWER SUPPLY BOARD ASSEMBLY	28480	04277-66504
A4C1 A4C2 A4C3 A4C4 A4C5	0180-1075 0180-1075 0180-1075 0180-2980 0180-2980	3 3 1 1	5 2	CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL	28480 28480 28480 28480 28480	0180-1075 0180-1075 0180-1075 0180-2980 0180-2980
A4C6 A4C7 A4C8 A4C9 A4C18	0180-1075 0180-3221 0180-3221 0180-3221 0180-3221	សសសសស	6	CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC	28480 28480 28480 28480 28480	0180-1075 0180-3221 0180-3221 0180-3221 0180-3221
A4C11 A4C12 A4C13 A4C14 A4C15	0180-1050 0180-1050 0180-3221 0180-3221 0180-1050	44554	5	CAPACITOR-FXD 100UF 25VDC CAPACITOR-FXD 100UF 25VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 100UF 25VDC	28488 28488 28489 28480 28480	0180-1050 0180-1050 0180-3221 0180-3221 0180-1050
A4C16 A4C17 A4C18 A4C19 A4C20	0180-1050 0180-1050 0160-4297 0180-1075 0160-3456	4 4 5 3 6	1 1	CAPACITOR-FXD 100UF 25VDC CAPACITOR-FXD 100UF 25VDC CAPACITOR-FXD .022UF +80-20% 100VDC CER CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 1000PF +-10% 1KVDC CER	28480 28480 56289 28480 28480	0180-1050 0180-1050 C023F101H223ZS22-CDH 0180-1075 0160-3456
A4021 A4022 A4023 A4024 A4025	0180-0197 0160-4822 0180-0291 0160-3094 0180-1704	823895	1 1 1 1	CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF +-10% 100VDC CER CAPACITOR-FXD 47UF+-10% 6VDC TA	56289 28480 56289 28480 56289	150D225X9020A2 0160-4822 150D105X9035A2 0160-3094 150D476X900682
A4C26 A4C27 A4C28 A4C29 A4C30	0180-0228 0160-0127 0160-0127 0160-4593 0160-0127	6 R R R R	2	CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1.5UF +-20% 40VDC CAPACITOR-FXD 1UF +-20% 25VDC CER	56289 28480 28480 28480 28480 28480	150D226X9015B2 0160-0127 0160-0127 0160-4593 0160-0127
A4C31 A4C32 A4C33 A4C34 A4C35	01801746 01604593 01803231 01803231 01803231	5 4 7 7	1	CAPACITOR-FXD 15UF+-18X 20VDC TA CAPACITOR-FXD 1.5UF +-20% 400VDC CAPACITOR-FXD 4.7 UF 450VDC CAPACITOR-FXD 4.7 UF 450VDC CAPACITOR-FXD 4.7 UF 450VDC	56289 28480 28480 28480 28480 28480	150D156X9020B2 0160-4593 0180-3231 0180-3231 0180-3231
A4636 A4637 A4638 A4639 A4640	0180-3231 0180-3253 0180-3253 0160-3969 0160-3969	7 7 7 6 6	S S	CAPACITOR-FXD 4.7 UF 450VDC CAPACITOR- FXD 470 UF 200VDC CAPACITOR- FXD 470 UF 200VDC CAPACITOR-FXD .015UF +-20PF 250VAC(RMS) CAPACITOR-FXD .015UF +-20PF 250VAC(RMS)	28480 28480 28480 28480 28480	0180-3231 0180-3253 0180-3253 9160-3769 0160-3769
A4C41	0180-0228	6		CAPACITOR-FXD 22UF+-18% 15VDC TA	56289	150D226X9015B2
A4CR1 A4CR2 A4CR3 A4CR4 A4CR5	1902-1217 1902-3208 1902-3208 1902-3234 1902-3234	8 1 1 3 3	1 2 2	DIODE-ZNR 6.2V 5% DO-4 PD=10W TC=+.035% DIODE-ZNR 15.4V 5% DO-35 PD=.4W TC=+.06% DIODE-ZNR 15.4V 5% DO-35 PD=.4W TC=+.06% DIODE-ZNR 19.6V 5% DO-35 PD=.4W DIODE-ZNR 19.6V 5% DO-35 PD=.4W DIODE-ZNR 19.6V 5% DO-35 PD=.4W	28480 28480 20480 28480 28480	1902-1217 1902-3208 1902-3208 1902-3234 1902-3234
A4CR6 A4CR7 A4CRB A4CR9 A4CR10	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025 1901-0691	ดหนกเล	:	DIODE-GEN PRP 100V 200MA DD-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-PWR RECT 100V 3A 200NS	28480 28480 28480 28480 28480 03538	1701-0025 1901-0025 1901-0025 1901-0025 A115A
A4CR11 A4CR12 A4CR13 A4CR14 A4CR15	1901-0691 1901-0691 1901-0691 1901-0691 1901-0691	8 8 8 8		DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS	03508 03508 03508 03508 03508	A115A A115A A115A A115A A115A
A4CR16 A4CR17 A4CR18 A4CR19 A4CR20	1901-0691 1901-0691 1901-0691 1901-0691 1901-0969	8883	z	DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-POWER RECT.	03508 03508 03508 03508 28480	A115A A115A A115A A115A 1901-0969
A4CR21 A4CR22 A4CR23 A4CR24 A4CR25	1901-0969 1902-3182 1901-0025 1901-0025 1902-3203	3000	1	DIODE-POWER RECT. DIODE-ZNR 12.1V 5% DD-35 PD=.4W DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-ZNR 14.7V 5% DO-35 PD=.4W	28480 28480 28480 28480 28480	1901-0969 1902-3182 1901-0025 1901-0025 1902-3203
A4CR26 A4CR27 A4CR28 A4CR29 A4CR30	1901-0025 1901-0025 1902-0555 1901-0025 1901-0025	សសមាល	1	DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-ZNR 13V 5% PD=1W TR-5UA DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7	28480 28480 28480 28480 28480	1901-0025 1901-0025 1902-0555 1902-0025 1901-0025

Table 6-3. Replaceable Parts

Designation N A4CR31 1 1 A4CR32 1 1 A4CR33 1 1 A4CR34 1 1 A4CR35 1 1 A4CR36 1 1 A4CR36 1 1 A4CR36 1 1 A4CR36 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 1 A4CR3 1 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 A4CR3 1 1 1 A4CR3 1 1	Number 1901-1065 1901-1065 1901-1065 1901-3191 1901-0025 1906-0080 2110-00305 2110-00305 2110-00307 1251-4938 1251-3837 9100-3139 9140-0171 9140-0758 9140-0758 9140-0758 9140-0757 9140-0757	C D Qty 2 3 222 1 1 1 5 1 1 5 1 6 3 3 3 3 3 3 3 3 3 3 3 3 3	Description DIODE-PWR RECT 1N4936 400V 1A 200NS DIODE-PWR RECT 1N4936 400V 1A 200NS DIODE-PWR RECT 1N4936 400V 1A 200NS DIODE-PWR RECT 1N4936 408V 1A 200NS DIODE-ZNR 13V 2X DO-35 PD=,4W TC=+,06% DIODE-GEN PRP 100V 200MA DO-7 DIODE-FW BRDG 600V 10A FUSE ,2SA 250V NTD 1,25X,25 UL FUSE 1,25A 250V TD 1,25X,25 UL FUSE 1,25A 250V TD 1,25X,25 UL CONNECTOR 3-PIN M METRIC POST TYPE CONNECTOR 3-PIN M METRIC POST TYPE CONNECTOR 4-PIN M UTILITY INDUCTOR 75UH 15% ,5DX,875LG INDUCTOR RF-CH-MLD 40UH 10% ,296DX,968LG INDUCTOR—767 UH INDUCTOR—767 UH INDUCTOR RF-CH-MLD 40UH 10% ,296DX,968LG	Mfr Code 14936 14936 14936 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488	Mfr Part Number 1N4936 1N4936 1N4936 1902-3191 1901-0025 1906-0080 2110-0004 3131.25 313001 1251-4938 1251-3837 9100-3139 9140-0171 9140-0758 9140-0758
A4CR32 11 A4CR33 11 A4CR34 11 A4CR35 11 A4CR36 11 A4CR36 11 A4F1 2 A4F2 2 A4F3 2 A4J1 11 A4J2 11 A4L1 9 A4L1 9 A4L5 9 A4L4 9 A4L5 9 A4L6 9 A4L7 9 A4LB 7 A4L9 9 A4L10 9	1901-1065 1901-1065 1901-1065 1902-3191 1901-0025 1100-0004 2110-0007 1251-4938 1251-3637 9100-3139 9140-0758 9140-0758 9140-0758 9140-0758 9140-0758 9140-0758 9140-0757 9140-0771	22 2 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5	DIODE-PWR RECT 1N4936 4080 1A 208NS DIODE-PWR RECT 1N4936 4080 1A 208NS DIODE-ZMR 130 22 DO-35 PD=,4W TC=+.06% DIODE-GEN PRP 1800 208MA DO-7 DIODE-FW BRDG 688V 18A FUSE ,25A 258V NTD 1.25X,25 UL FUSE 1.25A 258V TD 1.25X,25 UL FUSE 1.25A 258V TD 1.25X,25 UL CONNECTOR 3-PIN M METRIC POST TYPE CONNECTOR 4-PIN M UTILITY INDUCTOR 75UH 15% .50X,875LG INDUCTOR RF-CH-MLD 48UH 18% .296DX,968LG INDUCTOR - 787 UH INDUCTOR - 787 UH INDUCTOR RF-CH-MLD 48UH 18% .296DX,968LG	14936 14936 18488 28480 28480 28480 75915 75915 28480 28480 28480 28480 28480 28480	1N4936 1N4936 1902-3191 1901-0025 1906-0080 2110-0004 3131.25 313001 1251-4938 1251-3837 9100-3139 9140-0171 9140-0171 9140-0758
A4F1 2 A4F2 2 A4F3 2 A4J1 11 A4J2 11 A4L1 9 A4L2 9 A4L3 9 A4L4 9 A4L5 9 A4L6 9 A4L6 9 A4L7 9 A4LB 7 A4L9 9 A4L10 9	2110-0004 2110-0305 2110-0307 1251-4938 1251-3837 9140-0171 9140-0171 9140-0758 9140-0758 9140-0771 9140-0171 9140-0171 9140-0757 9140-0757	1 1 1 1 5 1 1 1 1 1 5 1 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	FUSE .25A 250V NTD 1.25X.25 UL FUSE 1.25A 250V TD 1.25X.25 UL FUSE 1A 250V TD 1.25X.25 UL CONNECTOR 3-PIN M METRIC POST TYPE CONNECTOR 4-PIN M UTILITY INDUCTOR 75UH 15% .5DX.875LG INDUCTOR RF-CH-MLD 40UH 10% .296DX.968LG INDUCTOR RF-CH-MLD 40UH 10% .296DX.968LG INDUCTOR- 787 UH INDUCTOR- 787 UH INDUCTOR RF-CH-MLD 40UH 10% .296DX.968LG	28480 75915 75915 28480 28480 28480 28480 28480 28480 28480	2110-0004 3131.25 313001 1251-4938 1251-3837 9100-3139 9140-0171 9140-0171
A4F2 2 A4F3 2 A4J1 1: A4J2 1: A4L1 9: A4L2 9: A4L3 9: A4L4 9: A4L5 9: A4L6 9: A4L6 9: A4L6 9: A4L9 9: A4L9 9: A4L1 9: A4L1 9: A4L1 9: A4L1 9: A4L2 9: A4L2 9: A4L3 9: A4L4 9: A4L5 9: A4L6 9: A4L6 9: A4L7 9: A4L8 9: A4L9 9: A4L1 9: A4L2 9: A4L3 9: A4L4 9: A4L5 9: A4L5 9: A4L6 9: A4L6 9: A4L9 9: A4L9 9: A4L1 9: A4L9 9:	2110-0305 2110-0007 1251-493B 1251-3837 9100-3139 9140-0171 9140-0758 9140-0758 9140-0758 9140-0757 9140-0171	5 1 1 1 5 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3	FUSE 1.25A 258V TD 1.25X.25 UL FUSE 1A 250V TD 1.25X.25 UL CONNECTOR 3-PIN M METRIC POST TYPE CONNECTOR 4-PIN M UTILITY INDUCTOR 75UH 15% .5DX.875LG INDUCTOR RF-CH-MLD 48UH 10% .296DX.968LG INDUCTOR RF-CH-MLD 48UH 10% .296DX.968LG INDUCTOR-767 UH INDUCTOR-767 UH INDUCTOR F-CH-MLD 48UH 10% .296DX.968LG	75915 75915 20400 20400 20400 28480 28480 28480 28480 28480	3131.25 313001 1251-4938 1251-3837 9100-3139 9140-0171 9140-0171 9140-0758
A4J2 1: A4L1 9: A4L2 9: A4L3 9: A4L4 9: A4L5 9: A4L6 9: A4L6 9: A4L7 9: A4L9 9: A4L9 9: A4L1 9: A4L1 9: A4L1 9: A4L2 9: A4L2 9: A4L3 9: A4L	7108-3137 7108-3137 7140-0171 7140-0171 7140-0758 7140-0758 7140-0751 7140-0171 7140-0757 7140-0171	1 1 5 1 3 6 3 3 2 3 3 3 5 5 1 0 1 1	CONNECTOR 4-PIN M UTILITY INDUCTOR 75UH 15% .5DX.875LG INDUCTOR RF-CH-MLD 40UH 10% .296DX.968LG INDUCTOR RF-CH-MLD 40UH 10% .296DX.968LG INDUCTOR- 787 UH INDUCTOR- 787 UH INDUCTOR RF-CH-MLD 40UH 10% .296DX.968LG	28480 28480 28480 28480 28480 28480 28480	1251-3837 9100-3139 9140-0171 9140-0171 9140-0758
A4L2 9 A4L3 9 A4L4 9 A4L5 9 A4L6 9 A4L6 9 A4L7 9 A4L8 7 A4L9 9 A4L10 9	7140-0171 1140-0171 9140-0758 9140-0758 9140-0758 7140-0171 7140-0171 7140-0462 9140-0757 7140-0171	3 6 3 2 3 3 3 5 1 1	INDUCTOR RF-CH-MLD 40UH 10% .296DX.96BLG INDUCTOR RF-CH-MLD 40UH 10% .296DX.96BLG INDUCTOR- 787 UH INDUCTOR- 787 UH INDUCTOR RF-CH-MLD 40UH 10% .296DX.96BLG	28480 28480 28480 28480	9140-0171 9140-0171 9140-0758
A4L7 9 A4LB 7 A4L9 9 A4L10 9	7140-0171 7140-0462 9140-0757 7140-0171	3 1 5 1	INDUCTOR RF-CH-MLD 40UH 10% .296DX.96BLG INDUCTOR RF-CH-MLD 46UH 10% .296DX.96BLG		
AA111	9140-0463	3	NDUCTOR 355UH INDUCTOR - 980 UH INDUCTOR - 980 H INDUCTOR RF-CH-MLD 48UH 18% ,296DX,96BLG	28480 28480 28480 28480 28480	9140-0171 9140-0171 9140-0462 9140-0757 9140-0171
A4L12 9	7140-8171	6 3 1 1	INDUCTOR 10MH 6% INDUCTOR RF-CH-MLD 40UH 10% .296DX.96BLG INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG	28480 28480 28480	91400463 91400171 91400210
A4Q2 11 A4Q3 11 A4Q4 11	1854-0477 1854-0477 1854-0477	9 3 7 5 7 7 9	TRANSISIOR PNP 2N2997A SI FD-18 PD=400MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR NPN 2N222A SI TD-18 PD=500MW TRANSISTOR NPN 2N222A SI TD-18 PD=500MW TRANSISTOR PNP 2N2907A SI TD-18 PD=400MW	04713 04713 04713 04713 04713	2N2907A 2N2222A 2N2222A 2N2222A 2N2322A 2N2907A
A4Q7 1: A4Q8 1: A4Q9 1:	1853-0281 1854-0624 1854-9624	7 9 6 2 6 2 1	TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR PNP 2N2907A SI TO-18 PD=400MW TRANSISTOR NPN 2N6308 SI TO-3 PD=125W TRANSISTOR NPN 2N6398 SI TO-3 PD=125W TRANSISTOR-NPN	04713 04713 04713 04713 28480	2N2222A 2N2917A 2N631B 2N631B 1854-0935
		3 1	TRANSISTOR-NPN TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	28480 04713	1854-0936 2N2222A
A4R2 06 A4R3 06 A4R4 06	0683-4705 0683-1805 0683-1515	5 1 8 3 5 3 2 1 9 3	RESISTOR 22K 5% .25W FC TC=-400/+800 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 150 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600	81121 81121 81121 81121 81121	CB2235 CB4705 CB1035 CB1515 CB1025
A4R7 0: A4R8 0: A4R9 0:	0683-4715 0683-4715	9 0 0 3 0 4 2	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CR1025 CB4715 CB4715 CB4735 CR4735
A4R12 86 A4R13 86 A4R14 04	0683-1525 0683-1525 0683-4705	D 2 2 4 8 8 8	RESISTOR 470 5% ,25W FC TC=-400/+600 RESISTOR 1.5K 5% ,25W FC TC=-400/+700 RESISTOR 1.5K 5% ,25W FC TC=-400/+700 RESISTOR 47 5% ,25W FC TC=-400/+500 RESISTOR 47 5% ,25W FC TC=-400/+500	81121 01121 01121 01121 01121	CB4715 CB1525 CB1525 CB4705 CB4705
A4R17 2: A4R18 0: A4R19 0:	2100-3274 3683-1025 0764-0015	7 1 2 1 9 7 1 2 2	RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 560 5% 20W MO TC=0+-200 RESISTOR 3.3 5% .25W FC TC=-400/+500	28480 28480 01121 28480 01121	2100-3352 2130-3274 CB1025 0764-3015 CB3365
A4R22 06 A4R23 06 A4R24 06	0683-0335 0683-1005 0683-5615	5 2 5 5 1 1 1 1 1 1	RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 560 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1005 CB33G5 CB1005 CB5615 CB1035
A4R27 04 A4R28 04 A4R29 01	0683-0275 0683-0275 0683-0275	9 4 9 9 9 9 9 3 1	RESISTOR 2.7 5%, 25W FC TC=-400/+500 RESISTOR 2K 2% 3W MO TC=0+-250	01121 01121 01121 01121 27167	CB27G5 CB27G5 CB27G5 CB27G5 FP3-3-250-2001-G
A4R32 06 A4R33 B6 A4R34 06	0699-1057 0686-3945 0683-5635	8 1 4 1 2 1 5 1 1 1	RESISTOR 20K 5% 1W MO TC=0+-200 RESISTOR- 15 OHM 10% 3W RESISTOR 390K 5% .5W CC TC=0+882 RESISTOR 56K 5% .25W FC TC=-400/+800 RESISTOR 1M 5% .5W CC TC=0+1000	28480 28480 91121 01121 01121	0761-0004 0699-1057 EB3945 CB5635 EB1055
A4R37 06	1698-3657	8 8 3	RESISTOR 68K 5% 2W MO TC=0+-200 RESISTOR 68K 5% 2W MO TC=0+-200 RESISTOR 2.2 5% 2W PW TC=0+-400	27167 27167 75042	FP42-2-T00-6802-J FP42-2-T00-6802-J BW42-282-J

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A4RT1	88390886	5	1	THERMISTOR DISC	28480	0839-0006
A4T1 A4T2 A4T3	9100-4287 9108-0857 9100-4293	1 8 2	1 1 1	TRANSFORMER-POWER TRANSFORMER-PULSE 114H1 TRANSFORMER-PULSE	28480 28480 28480	9100-4287 9100-0857 9100-4293
A4U1	1813-0255	3	1	IC-REGULATOR, HYERID	28480	1813-0255
A 4 R V 1 A 4 R V 2	0837-0237 0837-0106	5	1	VARISTOR VARISTOR	28480 28489	0837-0237 0837-8106
A4W1	8159-0005	0	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA MISCELLANEOUS PARTS	28480	8159-0005
	2110-0269 84276-01284 04276-00613 04276-00615 04276-00616 04276-01206 04276-26504	0 4	6 1 1 1 1	FUSEHOLDER-CLIP TYPE.25D-FUSE ANGLE (HEATSINK) SHIELD COVER SHIELD COVER SHIELD COVER SHIELD COVER SHIELD COVER ANGLE (BOARD) PC BOARD, BLANK	28480 28480 28480 28480 28480 28480 28480 28480	2110-0269 04276-01204 04276-00613 04276-00614 04276-00615 04276-00616 04276-01206 04276-01206

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A5						
A5	04277-66505	5	1	DISPLAY BOARD ASSEMBLY	28480	04277-66505
ASC1 ASC2 ASC3 ASC4 ASC5	0180-1085 0180-1085 0180-3218 0180-1885 0180-1085	សស០ស្ស	1	CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 1 UF 63VDC AL CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA	28480 28480 28480 28480 28480	0180-1085 0180-1085 0180-3218 0180-1085 0180-1085
A5DS1 A5DS2 A5DS3 A5DS4 A5DS5	1990-0540 1990-0540 1990-0540 1990-0540 1990-0540	ยผพผผ	10	DISPLAY-NUM-SEG 1-CHAR .43-H	28480 28480 28480 28480 28480	5082-7650 5082-7650 5082-7650 5082-7650 5082-7650
A5DS6 A5DS7 A5DS8 A5DS9 A5DS10	1990~0540 1990~0540 1990~0540 1990~0540 1990~0540	3 3 3 3 3		DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H	28488 28488 28488 28488 28488	5082-7650 5082-7650 5082-7650 5082-7650 5082-7650
A5DS11 A5DS12 A5DS13 A5DS14 A5DS15	1990-0531 1990-0531 1990-0531 1990-0531 1990-0486	ខេខខេខ	42	DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-7610 5082-7610 5082-7610 5082-7610 5082-4684
ASDS16 ASDS17 ASDS18 ASDS19 ASDS20	1990-0486 1990-0486 1990-0486 1990-0665 1990-0486	66636	5	LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 1990-0665 5082-4684
A5DS21 A5DS22 A5DS23 A5DS25 A5DS26	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	6 6 6 6		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684 5082-4684
A5DS27 A5DS29 A5DS30 A5DS31 A5DS33	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	66666		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684 5082-4684
A5D634 A5D835 A5D836 A5D837 A5D838	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	66666	:	LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28488 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684 5082-4684
ASD840 ASD841 ASD842 ASD843 ASD844	1990-0486 1590-0486 1990-0486 1990-0665 1990-0486	6 6 6 3 6		LED-LAMP LUM-INT=1HCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 1790-0665 5082-4684
A5DS45 A5DS46 A5DS47 A5DS48 A5DS49	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	66666		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684 5082-4684
A5DS50 A5DS51 A5DS52 A5DS53 A5DS54	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	66666		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684 5082-4684
A5D655 A5D656 A5D657 A5D658 A5D659	1990-0486 1990-0486 1990-0486 1990-0486 1990-0486	66666		LED-LAMP LUM-INT=1MCD IF=28MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 5082-4684 5082-4684
A5DS60 A5DS61 A5DS62 A5DS63 A5DS69	1990-0486 1990-0486 1990-0486 1990-0665 1990-0665	66633		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4684 5082-4684 5082-4684 1990-0665 1990-0665
A5DS70	1990-0665	3		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480	1990-0665
A5R1 A5R2 A5R3 A5R4 A5R5	1810-0301 1810-0627 1810-0301 1810-0627 1810-0627	4 7 4 7 7	2 3	NETWORK-RES 16-DIP51.0 OHM X 8 RESISTIVE NETWORK NETWORK-RES 16-DIP51.0 OHM X 8 RESISTIVE NETWORK RESISTIVE NETWORK	01121 28480 01121 28480 28480	3168510 1810-0627 3168510 1810-0627 1818-0627

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A5R6 A5R7	8683-4725 8683-4725	2	5	RESISTOR 4.7K 5% .25W FC TC≔-400/+700 RESISTOR 4.7K 5% .25W FC TC≔-400/+700	91121 01121	CB4725 CB4725
A581 A582 A583 A584 A585	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7	17	PUSHBUTTON SWITCH P.C. MCUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436
A556 A557 A558 A559 A5510	5068-9436 5060-9436 5060-9436 5060-9436 3101-2046	7 7 7 7 7	a	PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT SWITCH-SLIDE DPDT-NS	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 3101-2046
A5811 A5812 A5813 A5814 A5815	3101-1074 3101-1074 3101-2046 5060-9436 5060-9436	9 9 7 7 7	8	SWITCH-PUSHBUTTON SPST NO SWITCH-PUSHBUTTON SPST NO SWITCH-SLIDE DPDT-NS PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. KOUNT	28480 28480 28480 28480 28480	3101-1074 3101-1074 3101-2046 5066-9436 5360-9436
A5516 A5517 A5518 A5519 A5520	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	50609436 53609436 58609436 59609436 50689436
A5621	5060-9436	7		PUSHBUTTON SWITCH P.C. MOUNT	28480	5060-9436
A501 A502 A503 A504 A505	1858-8038 1820-0495 1820-1624 1820-1624 1858-0038	4 8 7 7	4 1 2	TRANSISTOR ARRAY IC DCDR TIL 4-TO-16-LINE 4-INP IC BER TIL 5 OCTL 1-INP IC BER TIL 5 OCTL 1-INP TRANSISTOR ARRAY	28480 01295 01295 01295 28480	1859-0038 SN74154N SN748241N SN748241N 1858-0038
A5U6 A5U7 A5U8 A5U9	1858-0038 1858-0038 1820-1216 1816-1533	4 4 3 8	1 1	TRANSISTOR ARRAY TRANSISTOR ARRAY IC DCDR TTL LS 3-TO-8-LINE 3-INP IC-M87051	28480 28480 01295 28480	1858-0038 1859-0038 SN74LS138N 1816-1533
	0360-1901 1200-0638 5041-0309 5041-0318 5041-0375	67565	2 14 3 3	MISCELLANEOUS PARTS CABLE TRANSISTION SOCKET-IC 14-CONT DIP DIP-SLDR KEY CAP KEY CAP KEY CAP-QUARTER (SMOKE)	28480 28480 28480 28480 28480	0360-1901 1200-0638 5041-0309 5041-0318 5044-0375
	5041-0384 5041-0922 04191-40002 5040-3327 04274-40003	6 8 0 5 1	2 8 1 6 3	KEY CAP-QUARTER (SMOKE GRAY) KEY CAP-QUARTER (EBY-PEARL) INSULATOR INSULATOR INSULATOR	28480 28480 28480 28480 28480	5041-0384 5041-0922 04191-40002 5040-3327 04274-40003
	04276-61641 04276-26505	9	1	CABLE ASSEMBLY-FLAT PC BOARD, BLANK	28460 28480	0427661641 04276-26505

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6		H				
A6	04276-66506	5	1	MOTHER BOARD ASSEMBLY	28480	04276-66506
A6BT1	1420-0306	2	1	BATTERY- 2.4V	28480	1420-0306
A6J1 A6J2 A6J4	1251-7845 1251-5382 1251-0541	9 5 8	1 1 1	CONNECTOR- 6 PIN, MALE CONNECTOR 4-PIN M METRIC POST TYPE CONNECTOR 34-PIN M RECTANGULAR	28480 28480 28480	1251-7845 1251-5382 1251-0541
A6U1	1813-0304	3	1	IC (MISC) SIP	28480	1813~0304
A6XA1L A6XA1R A6XA2C A6XA2L A6XA2R	1251-2582 1251-2582 1251-2026 1251-2582 1251-2582	1 1 8 1	5 2	CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS	28480 28480 28480 28480 28480	1251-2582 1251-2582 1251-2026 1251-2582 1251-2582
A6XA4C . A6XA4R A6XA21 A6XA22 A6XA23	1251-2026 1251-2582 1251-4978 1251-4978 1251-4978	8 1 3 3 3 3	3	CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS	28480 28480 05574 05574 05574	1251-2026 1251-2582 000231-3944 000231-3944 000231-3944
	0360-1244	0	4	MISCELLANEOUS PARTS TERMINAL-STUD SPCL-FOTHRU PRESS-MTG	28480	0.7401.244
	04276-26506	9	ï	PC BOARD, BLANK	28480	0360-1244 04276-26506
A21	84276-66521	4	1	HP-IB BOARD ASSEMBLY	28480	04276-66521
A21C1 A21C2	0180-2981 0180-1085	2	1 1	CAPACITOR-FXD 220UF+-20% 10VDC AL CAPACITOR-FXD 4.7UF 16VDC TA	28480 28480	0180-2981 0180-1085
A21J1 A21J2	1200-0485 1200-0654	2	1 1	SOCKET-IC 14-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR	28480 28480	1200-0485 1200-0654
A21R1 A21R2 A21R3 A21R4	1810-0305 0683-4725 0683-4725 0683-4725	80 N N N	1 3	NETWORK-RES 9-SIP4.7K OHM X 8 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700	28488 81121 81121 81121	1810-0305 CB4725 CB4725 CB4725
A2151	3101~1973	7	1	SWITCH-SL 7-1A DIP-SLIDE-ASSY .1A 50VDC	28480	3101-1973
A21U1 A21U2 A21U3 A21U4 A21U5	1820-2024 1820-2058 1820-2058 1820-2549 1820-1199	3 3 7 1	1 4 1 1	IC DRVR TTL LS LINE DRVR OCTL IC MISC TTL S QUAD IC MISC TTL S QUAD IC-8291A P HPIB IC INV TTL LS HEX 1-INP	01295 07263 07263 28480 81295	SN74L5244N MC344BAL MC344BAL 1820-2549 SN74L504N
A21U6 A21U7 A21U8	1820-2058 1820-2058 1820-2075	3 4	1	IC MISC TTL S QUAD IC MISC TTL S QUAD IC MISC TTL LS	07263 07263 01295	MC344BAL MC344BAL SN74LS245N
A21W1	8159-0005	0	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA MISCELLANEOUS PARTS	28480	8159-0005
	2360-0113 04276-00604 04276-61661 04276-26521	263	2 1 1	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI PLATE (HP-IB) CABLE ASSEMBLY PC BOARD, BLANK	00000 28480 28480 28480	ORDER BY DESCRIPTION 04276-00604 04276-61661 04276-26521

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number		
A22				OPTION DO1				
A22	04276-66522	5	1	INTERNAL DC BIAS BOARD ASSEMBLY	28480	0 4276-66 522		
A2201 A2202 A2203 A2204 A2205	0180-2951 0160-5498 0180-2951 0180-2951 0180-2951	6 6 6	4 3	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD .01UF +-10% 50VDC F CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 28480 28480	0180-2951 0160-5498 0180-2951 0180-2951 0180-2951		
A2206 A2207 A2208 A2209 A22010	0180-3220 0180-3220 0160-5599 0160-5498 0160-1631	4 4 3	2 1 1	CAPACITOR-FXD 10 UF 63VDC AL CAPACITOR-FXD 10 UF 63VDC AL CAPACITOR-FXD .1UF +-5% 100VDC F CAPACITOR-FXD .01UF +-10% 50VDC F CAPACITOR-FXD 1000PF +-10% 100VDC F	28480 28480 28480 28480 28480	0180-3220 0180-3220 0160-5599 0160-5498 0160-1631		
A22C11	0160-5498			CAPACITOR-FXD .01UF +-10% 50VDC F	28480	0160-5498		
A22CR1 A22CR2 A22CR3	1902-0692 1901-0040 1901-0040	1 1 1	1 2	DIODE-ZNR 6.3V 1% DO-7 PD=.4W TC=+.001% DIODE-SWITCHING 3DV 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480	1902-0692 1901-0040 1901-0048		
A22Q1 A22Q2 A22Q3 A22Q4 A22Q5	1854-0358 1853-0080 1853-0080 1854-0358 1854-0523	3 6 6 3 4	2 2	TRANSISTOR NPN SI PD=310MW FT=60MHZ TRANSISTOR PNP SI PD=300MW FT=30MHZ TRANSISTOR PNP SI PD=300MW FT=30MHZ TRANSISTOR NPN SI PD=310MW FT=60MHZ TRANSISTOR NPN SI PD=310MW FT=60MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ	28480 28480 28480 28480 28480	1854-0358 1853-0080 1853-0380 1854-0358 1854-0523		
A22 0 6	1853-0037	3	1	TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ	28488	1853-0037		
A22R1 A22R2 A22R3 A22R4 A22R5	1810-0629 1810-0625 1810-0302 0699-1020 0683-2255	95579	1 1 1 1	RESISTIVE NETWORK- DIP RESISTIVE NETWORK- DIP NETWORK-RES 8-SIP47.0 OHM X 4 RESISTOR- 470 OHM 1W RESISTOR 2.2M 5% ,25W FC TC=-900/+1100	28480 28480 91121 28480 01121	1810-0629 1810-0625 2088470 0699-1020 CB2255		
A22R6 A22R7 A22R8 A22R9 A22R10	2100-3214 2100-0567 2100-3214 0683-3355 0683-1035	0 0 2	2 1 1 1	RESISTOR-TRMR 100K 10% C TOP-ADJ 1-TRN RESISTOR-TRMR 2K 10% C TOP-ADJ 1-TRN RESISTOR-TRMR 100K 10% C TOP-ADJ 1-TRN RESISTOR 3.3M 5% .25W FC TC=-900/+1100 RESISTOR 10K 5% .25W FC TC=-400/+700	28480 28480 28480 01121 01121	2100-3214 2100-0567 2100-3214 CB3355 CB1035		
A22U1 A22U2 A22U3 A22U4 A22U5	1820-1730 1820-1730 1826-0485 1826-0416 1826-0522	6 6 8 5 4	2 1 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC CONV 10-B-D/A 16-DIP-P PKG IC SWITCH ANLG QUAD 16-DIP-C PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	01295 01295 24355 27014 01295	SN74L8273N SN74L8273N AD7530LN LF13331D TL074CN		
A22U7 A22U12	1826-0282 1826-0275	3	1	IC V RGLTR TO-92 IC 78L12A V RGLTR TO-92	04713 04713	MC79L12ACP MC78L12ACP		
T'Y En Eng Laf A Cop.	1000.0270		* 1	MISCELLANEOUS PARTS	04713	NE/OLIENOF		
	2360-0113 04276-0605 04276-26522	2	2 1 1	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI PLATE (DC BIAS) PC BOARD, BLANK	00000 28480 28480	ORDER BY DESCRIPTION 04276-00605 04276-26522		
			!					
		,	i					
į								

Table 6-3. Replaceable Parts

Table 0-3. Replaceable rails						
		СD	Qty	Description	Mfr Code	Mfr Part Number
1 2 3 4 5	5040-7219 2680-0172 5060-9803 2510-0192 5020-8836		2 4 2 16 4	STRAP HANDLE CAP (FRONT) SCREW STRAP HANDLE SCREW STRUT		
6 7 8 9 10	04276-01202 04274-40002 5060-9941 5040-7220 04276-01201		1 3 2 2 1	ANGLE (POWER SWITCH) GUIDE (ANGLE) SIDE COVER STRAP HANDLE CAP (REAR) ANGLE		
11 12 13 14 15	3101-2216 0515-0150 3050-0235 9135-0084 1400-0866		1 2 2 1 1	LINE SWITCH SCREW WASHER LINE FILTER CABLE CLAMP		
16 17 18 19 20	2110-0360 2100-0007 2110-0565 04276-00603 04276-66521 04276-00602		1 1 2 1 1	FUSE .75A 250V (220/240V) SLOW BLOW FUSE 1A 250V (100/120V) SLOW BLOW FUSEHOLDER CAP BLANK PANEL (COMPARATOR/HANDLER INTERFACE) HP-IB BOARD ASSEMBLY BLANK PANEL (INTERNAL DC BIAS)		
21 22 23 24 25	2360-0113 04276-04001 1250-0118 2200-0105 6960-0001		10 1 2 4 1	SCREW FAN COVER CONNECTOR-BNC SCREW CAP		
26 27 28 29 30	3160-0266 2110-0011 2110-0564 2260-0009 0360-1190		1 1 2 4 1	FAN 04276-61605 FUSE 1/16A 250V FUSEHOLDER BODY NUT SOLDER TERMINAL		
31 32 33 34 35	2190-0016 2950-0001 04277-00204 2110-0569 3101-1877		3 2 1 2 1	WASHER NUT REAR PANEL FUSEHOLDER NUT SLIDE SWITCH		
36 37 38 39 40	2360-0113 5020-8806 5060-9834 04276-00102 04276-00103		8 1 1 1	SCREW REAR FRAME TOP COVER CHASSIS (YELLOW) CHASSIS (RED)		
41 42 43 44 45	04276-00101 2360-0333 5020-8805 04276-00203 04276-25001		1 6 1 1 3	CHASSIS (BROWN) SCREW FRONT FRAME SUB PANEL WINDOW		
46 47 48 49 50	04277-00201 04277-00202 7120-1254 7120-0478 2950-0035 5040-3324 1510-0038		1 1 1 1 4 4	FRONT PANEL (HP) FRONT PANEL (YHP) NAME PLATE (HP) NAME PLATE (YHP) NUT INSULATOR-BNC BINDING POST		
51 52 53 54 55	04191-40001 5040-3325 2190-0084 5000-4212 2950-0006		1 4 1 4 1	GUIDE INSULATOR-BNC WASHER SOLDER TERMINAL NUT		
56 57 58 59 60	2190-0054 1250-0252 1460-1345 5040-7201 5060-9846		4 4 2 4 1	WASHER CONNECTOR-BNC STAND FOOT (BOTTOM) BOTTOM COVER		
61 62 63 64 65	5041-0564 04274-40001 1901-1065 0140-0200 0160-2230		1 1 4 2 1	KEY CAP ROD (POWER SWITCH) DIODE CAPACITOR 390pF CAPACITOR 3300pF		
66 67 68 69	1902-0657 0764-0016 0683-2245 0698-3634		4 1 1 1	DIODE RESISTOR 1kΩ RESISTOR 220kΩ RESISTOR 470Ω		

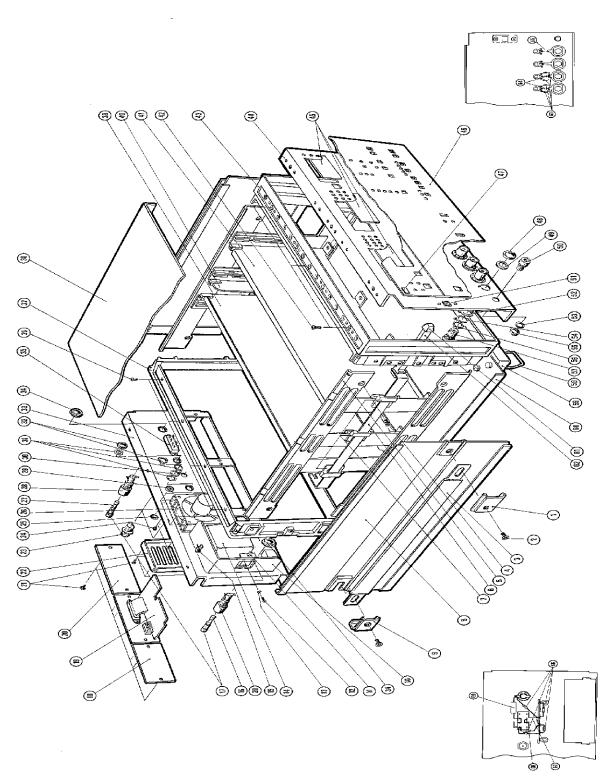


Figure 6-1. Major Mechanical Parts - Exploded View.

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information for adapting this manual to instruments for which the content does not directly apply. The following paragraphs explain how to adapt this manual to apply to an older instrument with a serial prefix lower than that given on the title page.

7-3. MANUAL CHANGES

- 7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the sequence listed.
- 7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1, it may be documented in a yellow MANUAL CHANGES supplement. For additional information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

Serial Prefix or Number	Make Manual Changes
2228J00155 and below	1, 2, 3
2228J00165 and below	2, 3
2228J00190 and below	3
i	

Table 7-2. Summary of Changes by Assembly

GHANGE		Assembly											
CHANGE	A1	A2	A4	A5	A6	A21	A22						
1	U5, U10												
2	U6												
3	W5												
<u> </u>				. 									
			1										
			;										
!													
						,							
						·							
			: : :										

CHANGE 1

Page 6-4, Table 6-3, Replaceable Parts:
Change the part numbers for A1U5 and U10 to read:

A1U5: 04276-85001 A1U10: 04276-85006

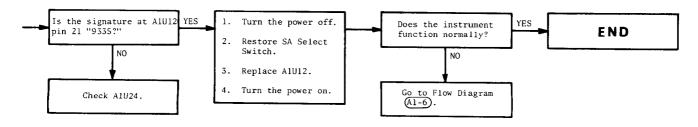
Page 8-61, Figure 8-41, Al Troubleshooting Flow Diagram (Sheet 4 of 7): Change Signature Sets 5-4, 5-6, 5-7, and 5-11 as follows:

Signature Set 5-4

AlJ1 pin 9 1PHU 286P pin 10 5369 pin 11 F02A pin 12 pin 13 6U4P pin 14 5669 191P pin 15 622U pin 16

Signature Set 5-6

A1U5 pin 9	0512
pin 10	5UA2
pin 11	AU44
pin 13	9693
pin 14	U762
pin 15	9911
pin 16	F79P
pin 17	UOP0
	1


Signature Set 5-7

A1U6	pin	9	8F8C
	pin	10	4P38
	pin	11	P3UP
	pin	13	64F7
	pin	14	А3НР
	pin	15	5 U57
	pin	16	9801
	pin	17	001C

Signature Set 5-11

AlU10 pin	9	8415
pin	10	5193
pin	11	U083
pin	13	2H2F
pin	14	7A72
pin	15	3PU8
pin	16	62A2
pin	17	CFF2
1		ı

Partially change the flow diagram as follows:

CHANGE 2

Page 6-4, Table 6-3, Replaceable Parts: Change the part number for AlU6 to read:

AlU6: 04277-85002

Page 8-61, Figure 8-41, Al Troubleshooting Flow Diagram (Sheet 4 of 7): Change Signature Sets 5-4 and 5-7 as follows:

Signature Set 5-4

8	
AlJ1 pin 9	U95F
pin 10	2P34
pin 11	52A9
pin 12	293F
pin 13	8FH2
pin 14	56AA
pin 15	AH32
pin 16	CAA1

Signature Set 5-7

A1U6	pin	9	8F8C
	pin	10	4P38
	pin	11	P3UP
	pin	13	64F7
	pin	14	АЗНР
	pin	15	5057
	pin	16	9801
	pin	17	001C
Ì			i

CHANGE 3

Page 6-4, Table 6-3, Replaceable Parts:

Delete the part number and description for AlW5.

Page 8-108, Figure 8-47, Al Component Locations: Partially change the diagram as follows:

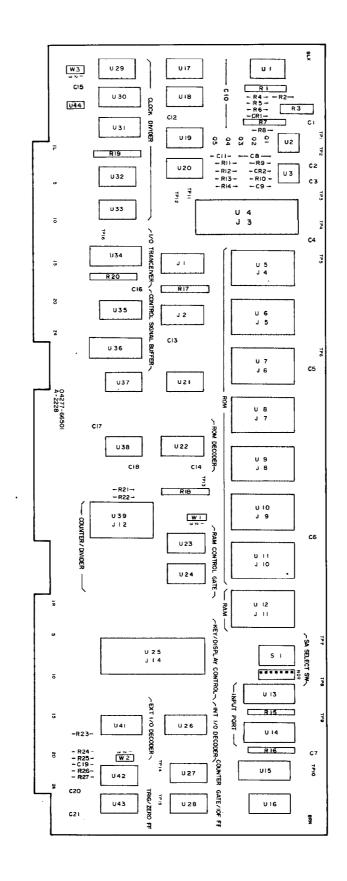


Figure 8-47. Al Component Locations.

Page 8-109, Figure 8-48, Al Schematic Diagram: Partially change the diagram as follows:

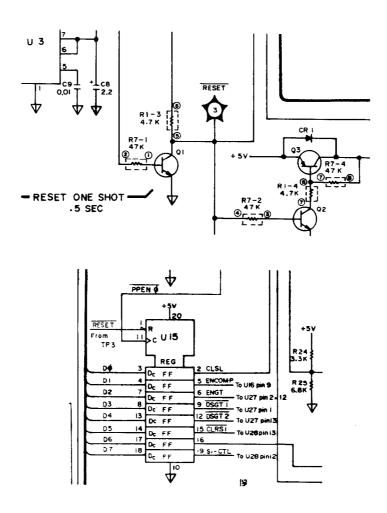


Figure 8-48. Al Schematic Diagram.

SERVICE

8-1. INTRODUCTION

This section provides the information and instructions required to service the Model 4277A LCZ Meter. Included are Theory of Operation Troubleshooting Guide with Schematics. The Theory of Operation describes fundamental principles and circuit operating theory of the 4277A with block diagrams. locator schematics, illustrations, troubleshooting guide and other technical data necessary for repairs are integrated into the service sheet foldouts. An illustration of the instrument interior is shown in Figure 8-36.

8-3. SAFETY CONSIDERATIONS

8-4. This section contains warnings and cautions that must be followed for your protection and to avoid damage to the instrument.

WARNING

MAINTENANCE DESCRIBED HEREIN PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT **PROTECTIVE** COVERS REMOVED. SUCH MAINTENANCE SHOULD BE PERFORMED ONLY BY SERVICE-TRAINED PERSONNEL AWARE OF THE HAZARDS INVOLVED EXAMPLE, FIRE (FOR AND ELECTRICAL SHOCK). WHERE MAINTENANCE CAN \mathbf{RE} PERFORMED WITHOUT APPLIED, THE POWER SHOULD BE REMOVED. BEFORE ANY REPAIR IS COMPLETED, ENSURE THAT ALL SAFETY FEATURES ARE INTACT AND FUNCTIONING AND THAT ALL PARTS NECESSARY ARE CON-NECTED TO THEIR MEANS OF PROTECTIVE GROUNDING.

8-5. THEORY OF OPERATION

8-6. The theory of operation discussion is organized into two sections: basic theory and block diagram discussion. The basic theory, beginning with paragraph 8-13, explains the concepts and fundamental theory of the 4277A adapted for accurately measuring the DUT and for achieving automated measurements. The

block diagram discussion describes the overall circuit operating theory of the 4277A with block-to-block signal flow. Also included are block and timing diagrams.

8-7. RECOMMENDED TEST EQUIPMENT

8-8. The test equipment required to the perform operations outlined in this section is listed in Table 4-1. The table includes type of instrument required, critical specifications, use, and recommended model. If the recommended model is not available, equipment which meets or exceeds the critical specifications listed may be substituted.

8-9. TROUBLESHOOTING

8-10. The troubleshooting guide provides instructions and information for locating a faulty circuit component. All instructions consider the safety of service personnel performing the procedures. The diagnostic guides are in the flow diagrams. The board troubleshooting diagrams are used to isolate failures to an individual malfunctioning circuit board assembly. The guides for locating a defective component are given on the individual board service-sheets and integrate service support data-test point locations, waveform illustrations, voltage data, timing diagrams, and other technical information in addition to providing schematic diagrams for each board. To facilitate troubleshooting of the 4277A Digital Section, the troubleshooting guide for the logic circuits uses signature analysis. An outline of signature analysis is provided in Figure 8-39.

8-11. REPAIR

8-12. Repair explanations tell how to replace defective circuit components. The replacement procedures recommended for components and parts which require special repair, replacement tools, or test equipment should be observed. Correct disassembly and the exchange procedures for such special parts are outlined in paragraphs 8-119. To prevent from resulting damage improper repair procedure, refer to the appropriate manual section before proceeding with repair.

SECTION VIII Model 4277A

8-13. BASIC THEORY

8-14. The descriptions starting with this paragraph explain the measurement principles of the 4277A LCZ Meter. The block diagram of the 4277A measurement circuit is shown in Figure 8-1. The solid lines in the block diagram show the main test signal flow and the dashed lines show the measurement control signal.

8-15. AUTO-BALANCE BRIDGE MEASURE-MENT CIRCUIT

8-16. The measurement function of the 4277A is based on the vector-voltage-current ratio measurement method. In this method, the impedance of the DUT is determined by measuring the vector ratio between the applied test signal voltage and the current flowing through the DUT. In low frequency applications vector-voltage-current method, voltage-to-current (I-V) converter amplifier which has a range resistor feedback circuit is employed to detect the DUT vector current. See Figure 8-2. The I-V converter causes a current to flow through the range resistor equal to the current through the DUT. Thus, the output voltage of the I-V converter is equal to the

product of the DUT current and the range resistor value. Accordingly, the DUT impedance is determined from the test signal voltage applied to the DUT, the output voltage of the I-V converter, and the range resistor value. The potential at the LOW terminal is approximately zero (virtual ground at the feedback node); therefore, the range resistor value has no effect on the current through the DUT. Additionally, the actual test signal level applied to the DUT is constant, regardless of the range resistor value. The frequency bandwidth of the I-V converter amplifier, where the flat gain-phase characteristic is achieved, determines the frequency limitations of this method. Because of the difficulty involved in achieving a broad bandwidth for an amplifier with a high open-loop gain, this method does not lend itself well to high frequency impedance measurements.

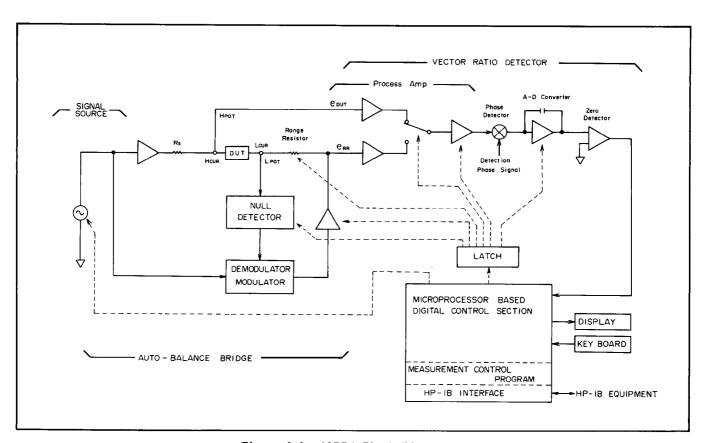


Figure 8-1. 4277A Block Diagram.

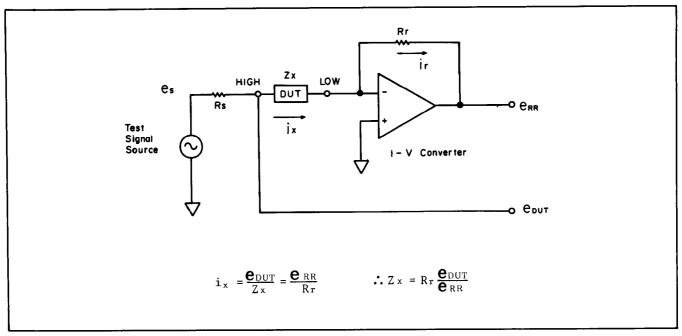


Figure 8-2. Vector-Voltage-Current-Ratio Measurement Method Using the Range Resistor Amplifier.

8-17. The auto-balance bridge circuit employed in the 4277A permits the vector voltage across the range resistor to be accurately proportional to DUT current. Figure 8-3 shows the basic configuration of the auto-balance bridge circuit. The test signal source applies a test signal, es, to the DUT through the source resistor, Rs, and causes a current, ix, to flow through the DUT. This yields the current, ir, which flows through the range resistor, Rr. When the bridge circuit is unbalanced (that is, $i \times i r$), the Null Detector detects the unbalance current, id, (= ix - ir), through the UNKNOWN "L" (L_{POT}) terminal. The null detector output vector indicates how the bridge is unbalanced for the real and imaginary vector components of the range resistor current. In response to the null detector output, the Modulator varies the amplitude and phase of the es input signal to develop a vector signal, ed, so as to suppress an increase in the unbalance current. This feedback control of the unbalance current automatically balances the bridge. When the bridge is balanced (that is, id = 0), the potential at the LOW terminal is approximately zero volts (virtual ground). The current flowing through the DUT is then equal to that flowing through the range resistor. Therefore, the impedance, Zx, of the DUT is calculated from the vector voltages, \mathbf{e}_{DUT} and eRR, as follows:

$$i_x = \frac{\mathbf{e}_{DUT}}{Z_x}$$
, $i_r = \frac{\mathbf{e}_{RR}}{R_r}$, $i_x = i_r$

where, $\,\textbf{e}_{\scriptscriptstyle DUT}$: The voltage applied to the DUT

Zx: DUT impedance value

 \mathbf{e}_{RR} : The voltage across the range

resistor

Rr: Range resistor value

Thus,

$$\frac{\mathbf{e}_{\mathrm{DUT}}}{Z_{\mathrm{X}}} = \frac{\mathbf{e}_{\mathrm{RR}}}{R_{\mathrm{r}}} \qquad \qquad \therefore Z_{\mathrm{X}} = R_{\mathrm{r}} \quad \frac{\mathbf{e}_{\mathrm{DUT}}}{\mathbf{e}_{\mathrm{RR}}}$$

Accordingly, the impedance of the DUT is known by measuring the ratio between the vector voltages, $\boldsymbol{e}_{\text{DUT}}$ and $\boldsymbol{e}_{\text{RR}}$. Note that the $\boldsymbol{e}_{\text{DUT}}$ signal is voltage-divided by the source resistor and the DUT impedance as the following equation:

$$\mathbf{e}_{\mathrm{DUT}} = \begin{vmatrix} \frac{Z \, x}{R \, s} + \frac{Z \, x}{Z \, x} \end{vmatrix} \cdot \mathbf{e}_{\, s}$$

In comparison with the range resistor amplifier method, the combination of the Null Detector and the Modulator may be considered an ideal feedback amplifier with a broad-bandwidth.

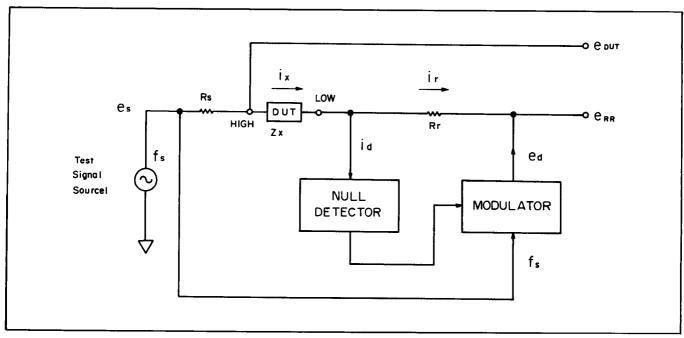


Figure 8-3. Auto-Balance Bridge Circuit.

8-18. VECTOR VOLTAGE RATIO DETECTOR

8-19. The Vector Voltage Ratio Detector (VRD) detects the individual real and imaginary vector components of the two input vector signals—the test signal applied to the DUT and the voltage across the range resistor—and provides the A-D conversion outputs which represent the ratio of the vector components necessary for calculating the various parameters. The basic theory of the vector voltage ratio measurement is described as follows.

8-20. When the bridge is balanced, the impedance, Zx, (or admittance, Yx) of the DUT, the test signal applied to the DUT, $\boldsymbol{e}_{\text{DUT}}$, and the voltage across the range resistor, $\boldsymbol{e}_{\text{RR}}$, are related to each other by the equation:

$$Z_x = R_r \frac{\mathbf{e}_{DUT}}{\mathbf{e}_{RR}}$$

or

$$Y_x = \frac{1}{R_r} \cdot \frac{\mathbf{e}_{RR}}{\mathbf{e}_{DUT}}$$

For accurate measurement of the vector voltages, the Process Amplifier detects the $\mathbf{e}_{\mathrm{DUT}}$ and \mathbf{e}_{RR} signals with differential inputs. The Process Amplifier alternately selects and sequentially feeds the $\mathbf{e}_{\mathrm{DUT}}$ and \mathbf{e}_{RR} signals to the Phase Detector. To derive the vector ratio of

the $\mathbf{e}_{\mathrm{DUT}}$ and \mathbf{e}_{RR} signals, the Phase Detector separates them into their orthogonal phase components using a set of detection phase signals which are exactly 90 degrees out of phase with each other. Figure 8-4 is a graphic representation of the relationship between the measurement signals ($\mathbf{e}_{\mathrm{ref}}$ and $\mathbf{e}_{\mathrm{test}}$) and the detection phase signals (\mathbf{V}_{D1} and \mathbf{V}_{D2}). With these detection phases, the $\mathbf{e}_{\mathrm{ref}}$ and $\mathbf{e}_{\mathrm{test}}$ signals are divided into the phase components \mathbf{e}_{1} , \mathbf{e}_{2} , \mathbf{e}_{3} , and \mathbf{e}_{4} . The $\mathbf{e}_{\mathrm{DUT}}$ and \mathbf{e}_{RR} signals are selected as the $\mathbf{e}_{\mathrm{ref}}$ or $\mathbf{e}_{\mathrm{test}}$ signal in accordance with the bridge measurement circuit mode. The relationship of this is shown in Table 8-1. The 4277A employs a bridge measurement circuit mode, as shown in Figure 8-5.

Table 8-1. Phase Detection Vector Selection in Accordance with the Bridge Measurement Circuit Mode.

Phase Detector Vector Bridge Circuit Mode	e _{ref}	e _{test}
Z mode	e _{RR}	e _{DUT}
Y mode	e _{DUT}	e _{rr}

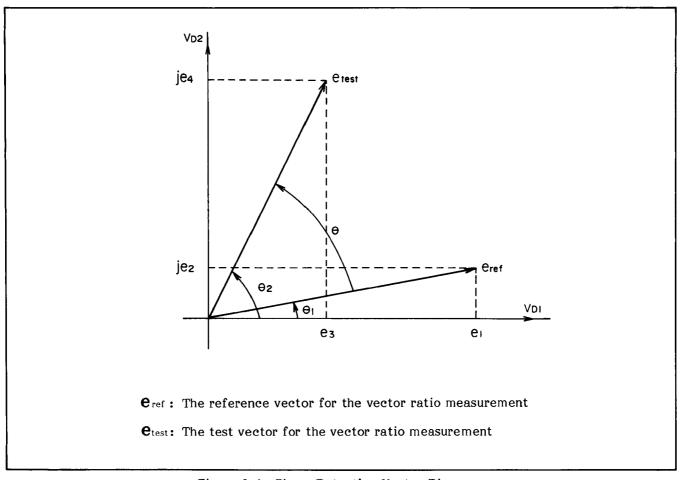
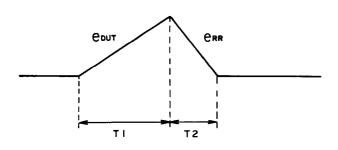



Figure 8-4. Phase Detection Vector Diagram.

8-21. The voltage ratio measurement is made using a dual slope integration technique as follows:

For example, the \mathbf{e}_{DUT} voltage charges the integrator for time T_1 . The \mathbf{e}_{RR} voltage then fully discharges the integrator in time T_2 . The resultant integrator output is shown in the figure below.

 T_1 : Constant charge period by \mathbf{e}_{DUT} signal T_2 : Discharge period by \mathbf{e}_{RR} signal

Because the amount of the charge and discharge quantities is zero, relation between the integrator input voltages and time periods is:

$$k_1 \mathbf{e}_{DUT} T_1 + k_2 \mathbf{e}_{RR} T_2 = 0$$

$$\frac{\mathbf{e}_{\text{DUT}}}{\mathbf{e}_{\text{RR}}} = k \frac{T_2}{T_1}$$
 (k = constant)

As the charge time T_1 is fixed ($T_1 = 5.2$ ms), the $\mathbf{e}_{\text{DUT}}/\mathbf{e}_{\text{RR}}$ value can be obtained by measuring time T_2 .

The vector ratio measurement employed in the 4277A consists of three measurement periods as shown in Figure 8-6. The description of each integration period is as follows:

 $\begin{array}{c|c} & & & & & \\ \hline C \; Range & & & & & \\ \hline 10.0k \; to \; 20.0k \; 20.2k \; to \; 200k \; 202k \; to \; 1.00M \\ \hline 10\mu F & & & & \\ \hline 10nF & & & & \\ \hline 10nF & & & & \\ \hline 10pF & & & & \\ \hline 1pF & & & & \\ \hline \end{array}$

C-ESR/G Measurement

ESR/G	Test Frequency (Hz)		
Range	10.0k to 1.00M		
1MΩ/10μS			
100kΩ/100μS	Y mode		
10kΩ/1mS	1 mode		
1kΩ/10mS			
100Ω/100mS	Z mode		
10Ω/1S	2 mode		

L-D Measurement

L Range	Test Frequency (Hz)						
L	10.0k	10.1k	to	100k	101k	to	1.00M
1Н							
100mH							
1 OmH	-	Y mode					
1mH		\					
100µН		7	mo	de			
10μH		(
1 _µ H					1		

L-ESR/G Measurement

ESR/G	Test Frequency (Hz)	
Range	10.0k to 1.00M	
100kΩ/100μS		
1 0kΩ/1mS	Y mode	
1kΩ/10mS		
100Ω/100mS	Z mode	
10Ω/1S		

| Z | -θ Measurement

Z Range	Test Frequency (Hz)		
121 Range	10.0k to 1.00M		
1МΩ			
100kΩ	Y mode		
10kΩ	1 mode		
1kΩ			
100Ω	Z mode		
10Ω	2340		

Figure 8-5. Bridge Measurement Circuit Mode in Accordance with Measurement Ranges.

Period 1:

The 90° phase component of the $\mathbf{e}_{\mathrm{ref}}$ signal is detected by the 90° detection phase. The \mathbf{e}_2 component charges the integrator for a constant time T_c . Next, the 0° phase component of the $\mathbf{e}_{\mathrm{ref}}$ signal is detected by the 0° detection phase. The \mathbf{e}_1 component discharges the integrator. Thus, the value of $\mathbf{e}_2/\mathbf{e}_1$ is calculated as the tangent of the phase angle θ_1 .

Period 2:

The 90° phase component of the \mathbf{e}_{test} signal (\mathbf{e}_{+}) and the 0° phase component of the \mathbf{e}_{ref} signal (\mathbf{e}_{1}) are detected to obtain the value of $\mathbf{e}_{+}/\mathbf{e}_{1}$ in the same manner as Period 1.

Period 3:

The 0° phase components of the \mathbf{e}_{test} and \mathbf{e}_{ref} signals (\mathbf{e}_3 and \mathbf{e}_1) are detected to obtain the value of $\mathbf{e}_3/\mathbf{e}_1$ in the ESR/G measurement. In the D measurement, the 0° phase component and the 90° phase component of the \mathbf{e}_{test} signal (\mathbf{e}_3 and \mathbf{e}_4) are detected to obtain the value of $\mathbf{e}_3/\mathbf{e}_4$ calculated as the tangent of the phase angle θ_2 .

To simplify the calculations for derivation of each parameter of the DUT, the values obtained in Periods 1, 2 and 3 are replaced with a, b and c respectively. That is,

$$\frac{\mathbf{e}_{\text{ref}} (90^{\circ})}{\mathbf{e}_{\text{ref}} (0^{\circ})} = \frac{\mathbf{e}_{2}}{\mathbf{e}_{1}} = a$$

$$\frac{\mathbf{e}_{\text{test}} (90^{\circ})}{\mathbf{e}_{\text{ref}} (0^{\circ})} = \frac{\mathbf{e}_{4}}{\mathbf{e}_{1}} = \mathbf{b}$$

$$\frac{\mathbf{e}_{\text{test}}(0^{\circ})}{\mathbf{e}_{\text{ref}}(0^{\circ})} = \frac{\mathbf{e}_{3}}{\mathbf{e}_{1}} = c$$

(in ESR/G measurements)

or

$$\frac{\mathbf{e}_{\text{test}}(0^{\circ})}{\mathbf{e}_{\text{test}}(90^{\circ})} = \frac{\mathbf{e}_{3}}{\mathbf{e}_{4}} = c \text{ (in D measurements)}$$

The DUT's impedance component values (R and X), admittance values (G and B) or the dissipation factor can be calculated from the following equations. The phase angle of the DUT impedance is:

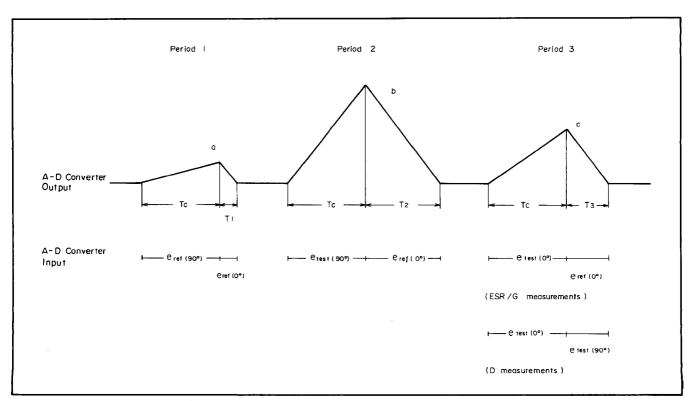


Figure 8-6. Vector Voltage Ratio Detection Timing.

$$\theta = \theta_2 - \theta_1 = \tan^{-1} A$$

$$= \cos^{-1} \frac{1}{\sqrt{1 + A^2}} = \sin^{-1} \frac{A}{\sqrt{1 + A^2}}$$

(1) ESR/G measurements

$$A = \frac{b - ac}{c + ab} \left(= \frac{T_2 - T_1 T_3}{T_3 + T_1 T_2} \right)$$

ESR/G =
$$\left| \frac{\mathbf{e}_{\text{test}}}{\mathbf{e}_{\text{ref}}} \right| \cos \theta$$

= $\frac{c + ab}{1 + a^2} \left(= \frac{T_3 + T_1 T_2}{1 + T_1^2} \right)$

$$X/B = \left| \frac{\mathbf{e}_{\text{test}}}{\mathbf{e}_{\text{ref}}} \right| \sin \theta$$
$$= \frac{b - ac}{1 + a^2} \left(= \frac{T_2 - T_1 T_3}{1 + T_1^2} \right)$$

(2) D measurements

$$A = \frac{1 - ac}{a + c} \left(= \frac{1 - T_1 T_3}{T_1 + T_3} \right)$$

$$B/X = \left| \frac{\mathbf{e}_{\text{test}}}{\mathbf{e}_{\text{ref}}} \right| \sin \theta$$
$$= \frac{b (1 - ac)}{1 + a^2}$$
$$\left(= \frac{T_2 (1 - T_1 T_3)}{1 + T_1 T_2} \right)$$

$$D = \frac{1}{A} = \frac{a + c}{1 - ac} \left(= \frac{T_1 + T_3}{1 - T_1 T_3} \right)$$

8-22. The basic measurement parameter of the 4277A differs depending on the impedance of the DUT. When the DUT's impedance value is measured on a range below 100Ω , the 4277A basically calculates the vector impedance component values R and X (or D and X). For DUTs which have higher impedance values, the 4277A calculates the vector admittance component values G and B (or D and B). Other measurement parameter values are subsequently calculated from the measured R (or D) and X (G (or D) and B) values using the stored parameter conversion formulas. Refer to Table 8-2.

8-23. When a high impedance DUT is measured, the test signal applied to the DUT is constant regardless the DUT's value (Y mode). Therefore, the $\boldsymbol{e}_{\text{DUT}}$ voltage is constant and the voltage across the range resistor (eRR) is inversely proportional to the DUT's impedance (that is, err is directly proportional to the admittance). On the other hand, when a low impedance DUT is measured, a 100Ω source resistor (test signal source output resistance) causes a constant test signal current to flow through the DUT. In this case, the range resistor voltage, e RR, is constant and the voltage across the DUT (e_{DUT} is proportional to the DUT's impedance (Z mode). relation between the test signal voltage/current and the DUT's impedance is given in Figure 8-7.

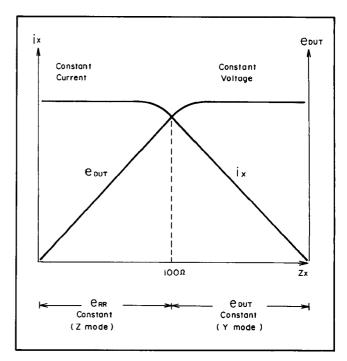


Figure 8-7. Test Signal Voltage and Current Relationship to DUT's Impedance.

8-24. When the instrument is set to HIGH SPEED L or HIGH SPEED C mode, the DISPLAY B measurement functions (D, Q, ESR or G) are not performed and the $extbf{C}_{ref}$ signal approaches the 0° phase detection signal (V_{D1}) (that is, the real axis) due to the auto phase adjustment circuit. Therefore, in these modes, the vector ratio measurement is performed for one period only, without the periods 1 and 3. This integration value is B or X. Also, when MEASUREMENT SPEED is set to FAST, the charging time is one fourth that of medium speed measurements (that is, $T_C = 1.3 \text{ms}$).

Table 8-2. Parameter Conversion Formulas

C-D (or C-Q) Measurement

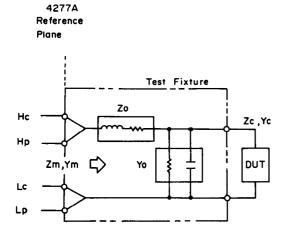
Bridge	Input	C •—••• •—••		D (or Q)	
Circuit Mode	Data			-□- ₩•	•₩•
Z	X, D	$-\frac{1}{2\pi f}\cdot \frac{1}{X}$	$-\frac{1}{2\pi f} \cdot \frac{1}{(1+D^2)X}$	D (or $\frac{1}{D}$)	
Y	B, D	$\frac{1}{2\pi f} \cdot (1 + D^2)B$	$\frac{1}{2\pi f}$ · B		

C-ESR/G Measurement

Bridge Circuit	Input	С		ESR/G	
Mode	Data	• □ -₩•	⋴ СД>	o-⊡-₩-o	€
Z	X, R	$-\frac{1}{2\pi f}\cdot\frac{1}{X}$	$-\frac{1}{2\pi f} \cdot \frac{X}{R^2 + X^2}$	R	$\frac{X}{R^2 + X^2}$
Y	В, G	$\frac{1}{2\pi f} \cdot \frac{G^2 + B^2}{B}$	$\frac{1}{2\pi f}$ · B	$\frac{G}{G^2 + B^2}$	G

L-D (or L-Q) Measurement

Bridge	Input	L		D (o	or Q)
Circuit Mode	Data	• □ •	。	-□- ₩•	• ₽
Z	X, D	$\frac{1}{2\pi f}$ · X	$\frac{1}{2\pi f} \cdot (1 + D^2)X$	D (or $\frac{1}{\overline{D}}$)	
Y	B, D	$-\frac{1}{2\pi f} \cdot \frac{1}{(1+D^2)B}$	$-\frac{1}{2\pi f}\cdot\frac{1}{B}$		


L-ESR/G Measurement

Bridge Circuit	Input	L		ESR/G	
Mode	Data	• □- ₩•	•₩•	• □ **•	←
Z	X, R	$\frac{1}{2\pi f}$ · X	$\frac{1}{2\pi f} \cdot \frac{X^2 + R^2}{X}$	R	$\frac{R}{R^2 + X^2}$
Y	B, G	$-\frac{1}{2\pi f}\cdot \frac{B}{G^2+B^2}$	$-\frac{1}{2\pi f}\cdot\frac{1}{B}$	$\frac{G}{G^2 + B^2}$	G

Z-θ Measurement

Bridge Circuit	Input	Z		6)
Mode	Data	• □•	\$ \$	• □· ••	₽₽₽
Z	X, R	$\sqrt{R^2}$	+ X ²	tan ⁻¹	X/R
Y	В, G	$1/\sqrt{G^2}$	² + B ²	tan ⁻¹	$\left(-\frac{B}{G}\right)$

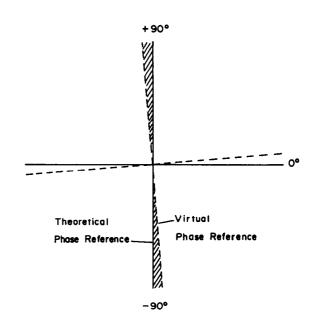
8-25. The Zero Offset Adjustment (Open and Short) function measures the residual impedance of the test fixture under short-circuit conditions and the stray admittance under open-circuit conditions. Correction calculations in the subsequent DUT measurements are made using the following equations and equivalent circuit mode for the residuals.

$$Zc = \frac{Z_M - Z_0}{1 - Z_M Y_0}$$

$$Y_{C} = \frac{Y_{M} - Y_{0}}{1 - Y_{M} Z_{0}}$$

where, Zc: Corrected impedance value

Yc: Corrected admittance value


Zo: Residual impedance value

Yo: Stray admittance value

Z_M: Measured DUT impedance value

Y_M: Measured DUT admittance value

8-26. Dissipation factor, D, and quality factor, Q, of reactive components are, of course, always positive values. However, when measuring very low-loss devices (almost purely capacitive or inductive components), the displayed D and Q values may be negative. This is because the axis of coordinates rotate in the impedance plane due to the slight measurement error in the measurement circuits. If the DUT's loss is close to zero (impedance vector of the DUT goes into the shaded area in the figure), the instrument will judge that DUT has a negative loss (D/Q).

8-27. DIGITAL CONTROL

8-28. The microprocessor based digital control circuit controls the analog measurement circuit in accordance with the programs stored in the ROM. The 4277A contains a Z80B (6MHz version) microprocessor. The HP-IB interface circuit, which is part of the digital control circuit, provides the means to connect the instrument to other HP-IB compatible equipment.

8-29. BLOCK DIAGRAM DISCUSSION

8-30. ANALOG MEASUREMENT SECTION (A2 Board)

8-31. The 4277A's measurement section consists of three main subsections: (1) Signal Source, (2) Auto-Balance Bridge, and (3) Vector Ratio Detector (VRD). A detailed description of each section is given in the following paragraphs. The block diagram of the 4277A analog measurement section is shown in Figure 8-26.

8-32. SIGNAL SOURCE

The signal source consists of a phase-locked loop, divider, four-stage low-pass filter, and the H/CUR amplifier. Figure 8-8 shows the block diagram of the signal source.

8-33. PHASE-LOCKED LOOP AND DIVIDER

8-34. The 4277A employs a conventional phase-locked loop (PLL) frequency synthesis technique. The test signal is a 10kHz to 1MHz sine wave, synthesized from the output of an 11.5200MHz crystal oscillator on the Al board and a tunable 8MHz-to-20MHz voltage-controlled oscillator (VCO) on the A2 board.

The phase detector in the PLL compares the programmable divider's output signal, NFVCO, with an accurate 8kHz reference signal, REF8K, and outputs an error signal which represents the frequency difference between the two input signals. The error signal is filtered by the loop filter, and the dc voltage output from the filter is the control voltage for the VCO. The 8kHz reference signal is generated by dividing down the 11.5200MHz signal from the crystal oscillator on the Al board. When the NFVCO signal is in-phase with and has the same frequency as the 8kHz reference signal, the VCO will be locked at the frequency given by the following equation:

$$f_{VCO} = 10 \cdot N_1 \cdot f_{ref} = 10 \cdot N_1 \cdot 8kHz$$

(8.00MHz\left vco\left\left\left 20.0MHz)

The divisor, N_1 , of the programmable divider is set by the microprocessor to an integer between 100 and 250.

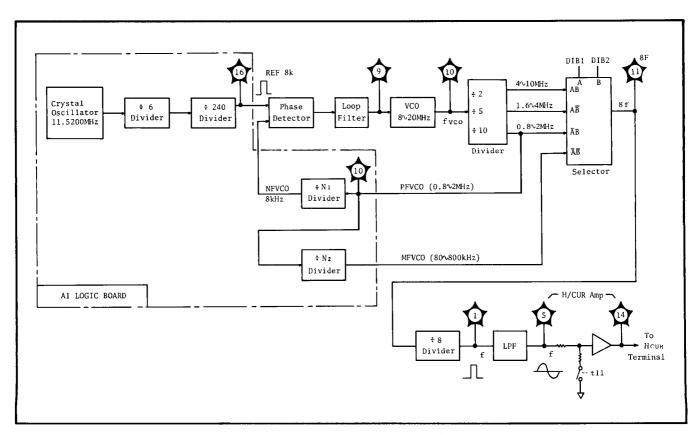


Figure 8-8. Signal Source Block Diagram.

8-35. The VCO's output signal is divided into four frequency bands-80kHz to $800 \mathrm{kHz}$, $800 \mathrm{kHz}$ to $2 \mathrm{MHz}$, $1.6 \mathrm{MHz}$ to $4 \mathrm{MHz}$, and $4 \mathrm{MHz}$ to $10 \mathrm{MHz}$ -by the $\div 2/\div 5/\div 10$ divider, $\div N_2$ divider, and the four-channel selector. The $80 \mathrm{kHz}$ to $800 \mathrm{kHz}$ range is used for test frequencies from $10 \mathrm{kHz}$ to $100 \mathrm{kHz}$; the other three ranges are used for test frequencies from $101 \mathrm{kHz}$ to $1 \mathrm{MHz}$.

To obtain test frequencies from 10kHz to 100kHz, the $\div 10$ divider counts down the VCO's output signal to an 800kHz to 2MHz signal (PFVCO) which is fed back to the $\div N_1$ divider for PLL control and to the $\div N_2$ divider. The N_2 divisor is set by the microprocessor so that the $\div N_2$ divider's output signal, MFVCO, is eight times the selected test frequency. Finally, the four-channel selector, which is also controlled by the microprocessor, outputs the MFVCO to the $\div 8$ divider for count-down to the requisite frequency.

For higher test frequencies-from $101 \rm kHz$ to $1 \rm MHz$ -the VCO's output is divided down by the $\div 2$, $\div 5$, and $\div 10$ dividers to obtain, respectively, a $4 \rm MHz$ -to- $10 \rm MHz$ signal, a $1.6 \rm MHz$ -to- $4 \rm MHz$ signal, and an $800 \rm kHz$ -to- $2 \rm MHz$ signal. One of these signals will have a frequency that is eight times the selected test frequency and will be output by the four-channel selector to the $\div 8$ divider.

The relationship between the test frequency and each of the PLL control parameters— N_1 and N_2 divisors, VCO frequency, etc.—is given in Table 8-3.

8-36. As mentioned earlier, there are four test frequency ranges. The microprocessor automatically selects the appropriate range by setting the DIB1 and DIB2 control lines of the four-channel selector in accordance with the test frequency set on the front panel. Refer to Table 8-4.

Table 8-4. Test Frequency Range Control

Test Frequency (Hz)	Control Signals	
rese rrequency (mz)	DIB1	DIB2
10.0k to 100k	LOW	LOW
101k to 200k	LOW	HIGH
202k to 500k	HIGH	LOW
505k to 1.00M	HIGH	HIGH

The 8F signal output from the four-channel selector is divided down to the selected frequency by the ÷8 divider. The signal at the output of the ÷8 divider is a fairly clean square wave.

8-37. The $\div 2/\div 5/\div 10$ divider used in the signal source is a dual decade counter on a single integrated circuit, A2U16. One counter, U16A, performs the \display 2 and \display 10 operations. The other counter, U16B, performs the ÷5 operation. A special reclock circuit, UlOB, shown in Figure 8-9, is used to eliminate ÷5 signal and ÷10 signal noise (especially 200kHz and 500kHz) superimposed on the ÷2 signal as a result of capacitive coupling within the ÷2/÷5/÷10 A second reclock circuit, U10A, reduces noise caused by switching within the dividers. Both reclock circuits consist of a single D-type flip-flop.

Table 8-3. PLL Control Parameters

Parameter		Test Frequency (Hz)				
Tarameter	10.0k to 20.0k	20.2k to 50.0k	50.5k to 100k	101k to 200k	202k to 500k	505k to 1.00M
VCO (at TP10)	8.00M to 16.0M	8.08M to 20.0M	8.08M to 16.0M	8.08M to 16.0M	8.08M to 20.0M	8.08M to 16.0M
Divider	÷10	÷10	÷10	÷10	÷5	÷2
PFVCO	800k to 1.60M	808k to 2.00M	808k to 1.60M	808k to 1.60M	808k to 2.00M	808k to 1.60M
N ₁	100 to 200	101 to 250	101 to 200	101 to 200	101 to 250	101 to 200
N ₂	10	5	2	-	-	-
MFVCO	80.0k to 160k	161.6k to 400k	404k to 800k	~	-	-
8F (at TP11)	80.0k to 160k	161.6k to 400k	404k to 800k	808k to 1.60M	1.616M to 4.00M	4.04M to 8.00M

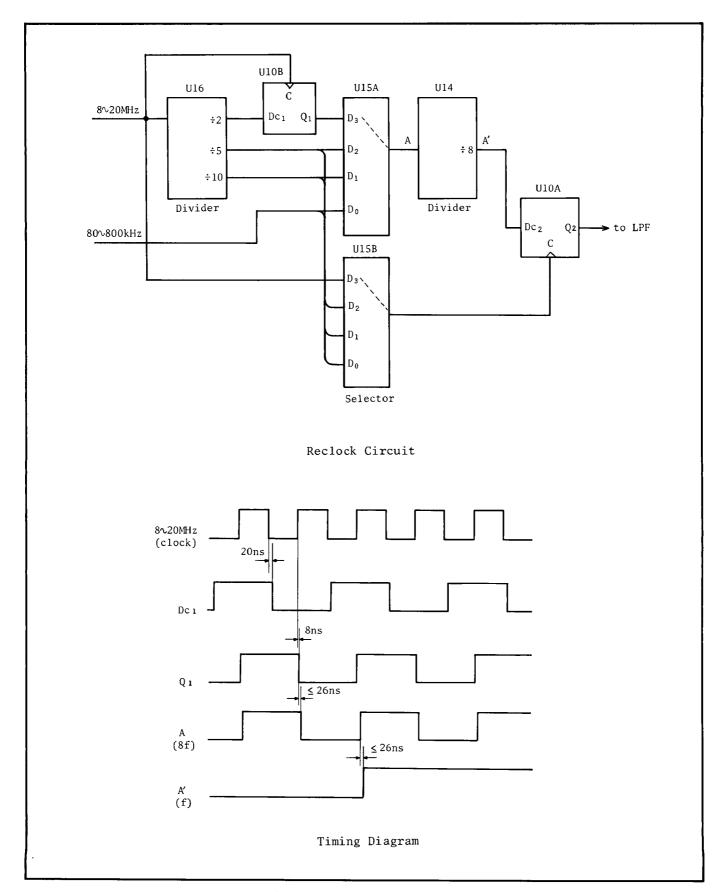


Figure 8-9. Reclock Circuit.

8-38. LOW-PASS FILTER

8-39. The four-stage low-pass filter passes the fundamental of the square wave signal output from the ÷8 divider, while attenuating the harmonics to a level that is -50dB or more below the fundamental. The filter's -6dB cut-off frequency automatically follows the frequency of the input signal so that the level of the filtered output (sine wave) is constant at 300mVrms (approximate) over the 4277A's full frequency range. A simplified circuit schematic of one stage of the low-pass filter, along with its gain versus frequency characteristics, is shown in Figure 8-10.

The third and fourth stages of the low-pass filter also provide the 90° and 0° phase reference signals for the phase tracking circuits. This will be explained in more detail in paragraph 8-49.

8-40. H/CUR AMPLIFIER

8-41. The H/CUR amplifier controls the level of the test signal applied to the device under test (DUT) as directed by the TEST SIG LEVEL setting on the instrument's front panel. When TEST SIG LEVEL is set to HIGH, the tll signal connected to the base of Q5 is LOW, turning off Q5. The 300mVrms signal from the low-pass filter is attenuated by R30-3 and R32, which construct a simple voltage divider. When TEST SIG LEVEL is set to LOW, the tll signal goes HIGH, turning on Q5 and thereby connecting R31 in parallel with R32 of the voltage divider. The amplitude of the signal applied to the amplifier, U24 and U25, is thus reduced. The amplifier's gain is approximately x3.8.

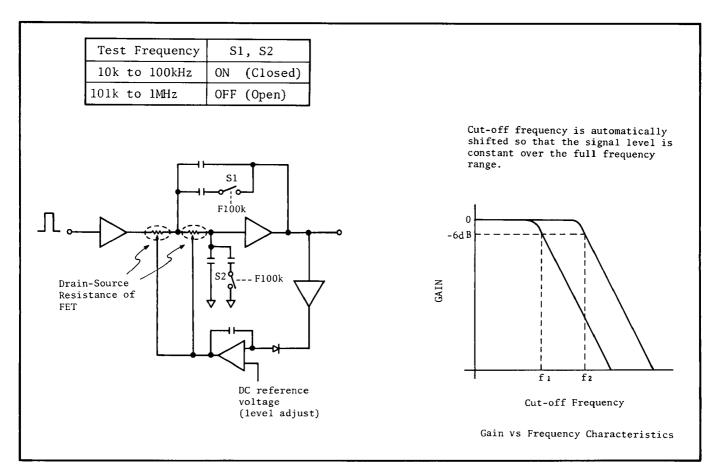


Figure 8-10. Low Pass Filter.

8-42. AUTO-BALANCE BRIDGE

8-43. The auto-balance bridge consists of the unknown sample, a range resistor, the Null Detector and the Modulator. Figure 8-11 shows the block diagram of the auto-balance bridge.

8-44. NULL DETECTOR

8-45. The unbalance current which results when the bridge is not completely balanced is detected by an I-V converter (in the null detector) through the LPOT terminal and is converted into a vector voltage signal. To improve gain at high frequencies, the I-V converter employs a staggered circuit configuration. Because the I-V converter's feedback magnitude varies depending on the DUT impedance, the feedback circuit elements are automatically changed in response to selection of measurement range (test frequency and range resistor). Refer to Figure 8-12.

8-46. The Gain Normalizer Amplifier and the x100 Amplifier amplify the unbalance vector voltage signal in order to maintain the sensitivity of the balance control loop (the Null

Detector and the Modulator circuits) almost constant against changes in the test signal level and DUT impedance. In input stage of the Modulator Amplifier, the signal is attenuated to compensate for the gain of the Gain Normalizer Amplifier stage. The microprocessor does this by setting the SPAM and TLPAM control signals to suit the test signal and measurement conditions. Figure 8-13 shows the SPAM and TLPAM control settings.

8-47. MODULATOR

8-48. Figure 8-11 shows the basic circuit configuration of the Modulator. The unbalance vector signal which is detected by the Null Detector is phase detected and separated into its orthogonal vector components. The phase detectors output dc voltages proportional to the magnitudes of respective the vector components. Reverse-phase components yield reverse-polarity voltage outputs (negative de levels) from the phase detectors. The vector modulators vary the amplitudes of the four orthogonal phase vector signals (0°, 90°, 180°, -90°), which are generated by the low-pass filter in the signal source and the phase tracking

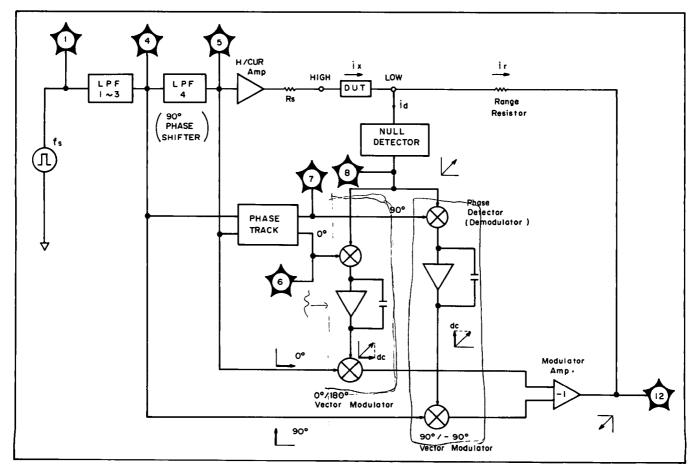


Figure 8-11. Auto-Balance Bridge Block Diagram.

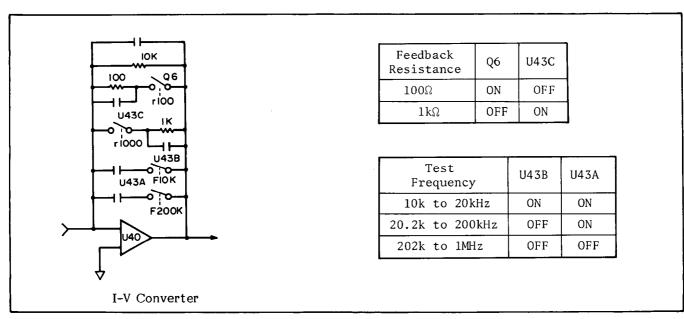


Figure 8-12. Feedback Circuit Element Selection in I-V Converter.

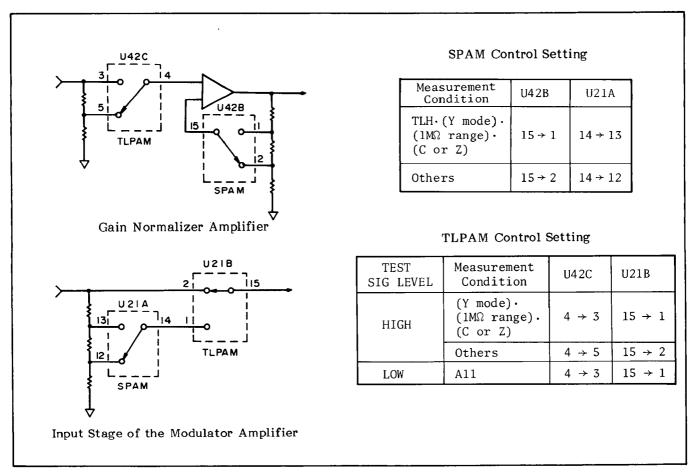


Figure 8-13. SPAM and TLPAM Control Signals.

circuits, in response to the null detector output vector components. The $0^{\circ}/180^{\circ}$ modulator provides an amplitude-controlled output which is in-phase with the test signal when the 0° phase detector output is a positive voltage. Conversely, it provides a reverse phase output for a negative voltage output from the phase detector. Thus, the 0°/180° vector modulator's output signal is represented by a vector on the real axis of the coordinates shown in Figure 8-14. The 90 °/-90 ° vector modulator operates similarly to the 0°/180° vector modulator with respect to the 90° phase shifted input signal. The 90°/-90° vector modulator output signal is represented by a vector on the imaginary axis (see Figure 8-14). As a result of this vector modulation, the magnitudes of the real and imaginary vector components of the null detector output are transferred to orthogonal vectors of the vector modulator outputs. The modulator amplifier sums the signals output from the 0°/180° and 90°/-90° vector modulators and, simultaneously, reverses the phase of the resultant vector signal (the modulator amplifier provides 180° phase shift). Consequentially, the modulator amplifier output. **e**d, has a vector direction opposite that of the unbalance current. The ed signal changes in response to the unbalance current so as to suppress increases in the unbalance current. Thus, the unbalance current approaches zero. Because the ed signal is controlled with respect to the individual magnitudes of the real and imaginary components of the unbalance current, the bridge can reach accurate balance even if the balance control loop has a phase error related to test signal.

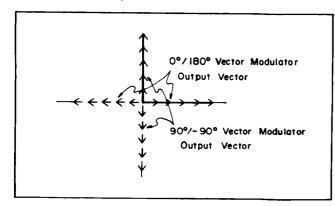


Figure 8-14. Vector Representation of the Vector Modulator Outputs.

8-49. PHASE TRACKING CIRCUITS OF THE BRIDGE CONTROL LOOP

8-50. If the phase shift in the balance control loop is so large that the bridge cannot be automatically balanced, the phase characteristics of the balance control loop can be compensated by properly adjusting the phase of the 0° and 90° reference phase signals used by the phase detectors in reference to the test signal.

The output from the third stage of the low-pass filter in the signal source is used as the 90° reference phase signal. The output from the fourth stage of the low-pass filter is used as the 0° reference phase signal. The fourth stage of the low-pass filter functions as a 90° phase shifter. Depending on the frequency of the test signal, the input vs. output phase lag is between -105° and -85°. Thus, the 0° and 90° reference phase signals do not always maintain a precise 90° phase relationship. This does not, however, affect the detection of the unbalance current.

The phase tracking circuits shift the phase relationship of the reference phase signals as appropriate for the selected test frequency without changing the signal amplitude and thereby ensure the bridge being automatically balanced over the entire test frequency range.

8-51. RANGE RESISTOR

8-52. The values of the range resistors used in the auto-balance bridge are 100Ω , $1k\Omega$ and $10k\Omega$. To ensure accurate range resistor values and minimum residual reactance (mainly stray capacitance), an potentiometer and a phase compensation trimmer capacitor are provided for each range resistor. Range resistor selection and CMR Amplifier switching is controlled by the RRa and RRb control signals. Refer to Table 8-5.

Table 8-5. Range Resistor Selection

Range	Control Signals		
Resistor	RRa	RRb	
100Ω	LOW	LOW	
1kΩ	HIGH	LOW	
10kΩ	LOW	HIGH	

8-53. The CMR (Common Mode Rejection) amplifier provides compensation for any decrease in the range resistor signal caused by the inherent impedance of the internal cabling from the LCUR terminal to the range resistor.

8-54. VECTOR RATIO DETECTOR

8-55. The block diagram of the vector ratio detector (VRD) is shown in Figure 8-15. This section consists of the Process Amplifier, Phase Detector, Phase Generator, and A-D Converter.

8-56. PROCESS AMPLIFIER

8-57. The Process Amplifier contains the VRD's Input Tracking circuits, AM Amplifier, and Test Level Low Amplifier.

8-58. VRD INPUT TRACKING

8-59. The input tracking circuit of the voltage ratio detector consists of two carefully matched buffer amplifiers which detect and pass the \mathbf{e}_{RR} and \mathbf{e}_{DUT} signals without altering the phase relationship between the two inputs. The \mathbf{e}_{RR} signal, the complex voltage across the range resistor, is input to one of the buffer amplifiers from the range resistor circuit; the \mathbf{e}_{DUT} signal, the complex voltage across the device under test, is input to the other buffer amplifier from the \mathbf{H}_{POT} UNKNOWN terminal. An analog switch alternately selects the output from each buffer amplifier for processing by the voltage ratio detector. In normal operation, switching

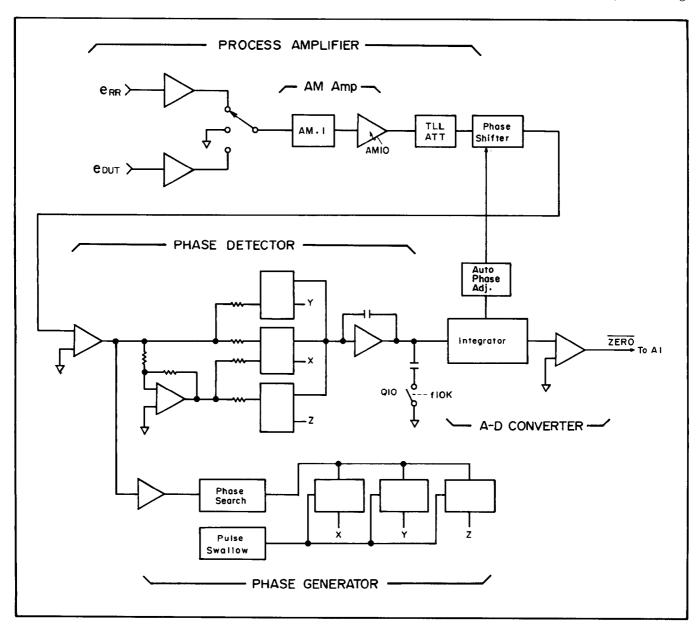


Figure 8-15. Vector Ratio Detector Block Diagram.

(signal selection) is controlled by the EDUT and EOFF signals sent from the microprocessor. See Table 8-6.

Table 8-6. ERR and EDUT Switching Control

Control Signal		Selected
EDUT EOFF		Signal
LOW	LOW	e rr
HIGH	LOW	e _{DUT}
LOW	HIGH	off
HIGH	HIGH	N.C.

8-60. AM AMPLIFIER

8-61. The AM Amplifier expands the 4277A's measurement range by attenuating or amplifying the incoming e_{ref} or e_{test} signal by a factor of 10. (The signals input to the input tracking circuit are called \boldsymbol{e}_{RR} and \boldsymbol{e}_{DUT} . The signal at the output of the input tracking circuit is more properly called e_{ref} or e_{test} .) By selectively attenuating or amplifying the eref and etest signals, the AM Amplifier increases the ratio between the signals by 10. Figure 8-16 shows the AM.1 and AM10 control settings. Table 8-7 the relationship between signal-to-signal ratio and the control settings. Range information is given in Figure 8-18.

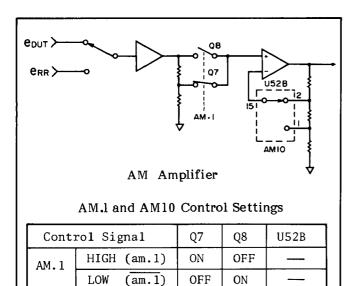


Figure 8-16. AM.l and AM10 Control Signals.

 $15 \rightarrow 1$

 $15 \rightarrow 2$

HIGH

LOW

AM10

Table 8-7. AM Amplifier Control

Code*	Ratio	e _{test}		e ref	
		AM.1	AM10	AM.1	AM10
A1	1 — 1	LOW	LOW	LOW	LOW
A2	10 — 1	LOW	HIGH	HIGH	HIGH
A3	10-10	LOW	HIGH	LOW	HIGH

^{*} Refer to the tables listed in Figure 8-18.

8-62. TEST LEVEL LOW (TLL) AMPLIFIER

8-63. The attenuator at the input of the TLL Amplifier is controlled in accordance with the selected test signal level. When the TEST SIG LEVEL is set to LOW, the measurement signal through the attenuator attenuation and is then amplified so that the test signal level is sufficient for accurate phase detection. When the TEST SIG LEVEL is set to HIGH, the measurement signal is attenuated so that the amplitude of the signal input to the TLL Amplifier is approximately the same as that of the low level signal. This keeps the level of the signal applied to the A-D converter constant and improves the accuracy of vector ratio detection for low level test signal measurements. The TLL Amplifier's control settings are shown in Figure 8-17.

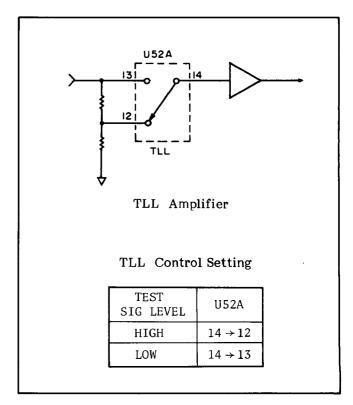


Figure 8-17. TLL Control Signal.

C-D Measurement

C Range	Test Frequency (Hz)			
l o mange	10.0k to 20.0k 20.2k to 200k 202k to 1.00M			
10μF				
lμF	A1 (A2)			
100nF				
10nF	A1 (A3)			
lnF				
100pF				
10pF	A2 (A3)			
1pF				

C-ESR/G Measurement

ESR/G	Test Frequency (Hz)
Range	10.0k to 1.00M
1MΩ/10μS	A2 (A3)
100kΩ/100μS	
10kΩ/1mS	A1 (A3)
1kΩ/10mS	
100Ω/100mS	
10Ω/1S	A1 (A2)

L-D Measurement

L Range	Test Frequency (Hz)			
	10.0k 10.1k to 100k 101k to 1.00			
1Н				
100mH				
1 OmH	A1 (A3)			
1mH				
100μΗ				
10μΗ	A2 (A3)			
1μН				

L-ESR/G Measurement

ESR/G	Test Frequency (Hz)	
Range	10.0k to 1.00M	
100kΩ/100μS		
10kΩ/1mS	A1 (A3)	
lkΩ/10mS	AI (AS)	
100Ω/100mS		
10Ω/1S	A2 (A3)	

| Z | -0 Measurement

Z Range	Test Frequency (Hz)	
12780	10.0k to 1.00M	
1MΩ		
100kΩ	A3 (A3)	
10kΩ		
1kΩ		
100Ω		
10Ω		

Note: The meanings for codes Al, A2, and A3 are given in Table 8-7. Codes enclosed in parentheses apply when TEST SIG LEVEL is set to LOW.

Figure 8-18. AM Amplifier Control Conditions in Accordance with Measurement Ranges.

8-64. PHASE DETECTOR

8-65. The phase detector separates incoming e_{ref} and e_{test} signals into their individual 0° (real) and 90° (imaginary) components for measurement by the integrator and zero detector. The phase detector circuit consists of three parallel-connected phase detectors. Each is controlled by its own phase reference signal. The phase relationships among the phase reference signals is constant. The phase relationship between the \boldsymbol{e}_{ref} signal and the phase reference signals, however, is either 0 ° or 90 ° depending on which vector component (real or imaginary) of the incoming eref or etest signal is to be detected. Figure 8-20 shows the timing diagram when the 0 ° (real) component of the etest signal is being detected. The phase detector circuit's output waveform will be the sum of the three individual waveforms shown in the figure. When the 90° (imaginary) component is to be detected, the X, Y, and Z phase reference signals are all phase shifted 90 $^{\circ}$ in reference to the eref signal. Keep in mind that both incoming signals, $\,\boldsymbol{e}_{\text{ref}}\,$ and $\boldsymbol{e}_{\text{test}}$, are phase detected to compensate for any phase error caused by the phase detector's input circuitry. The inverting amplifier increases detection efficiency. Transistor Q10 at the output of the phase detector is turned on to reduce ripple in the phase detector's output when the test frequency is in the 10kHz to 20kHz range.

Most methods of phase detection use only one phase detector and one phase reference signal which is either a sine wave or a square wave. Square wave phase detectors are, by far, more popular than sine wave phase detectors, but they output signals that include low amplitude harmonics corresponding to the vector products of the input signal's harmonic content and the harmonics of the square wave phase reference signal. (This comes from the fact that a phase detector is basically a mixer.) These harmonics cause a measurement error. Sine wave phase detectors have less harmonic content in their outputs, but they cannot offer the accuracy obtainable with square wave phase detectors.

The 4277A's phase detector uses three phase reference signals which, if summed, produce a digital sine wave. See Figure 8-19. Using such phase reference signals significantly reduces the amplitude of the third and fifth harmonics in the output, as shown in the figure. The phase reference signals are generated by the Phase Generator.

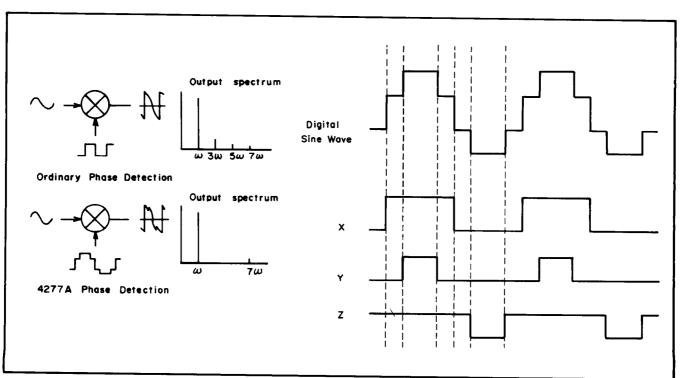


Figure 8-19. Phase Detection Principle.

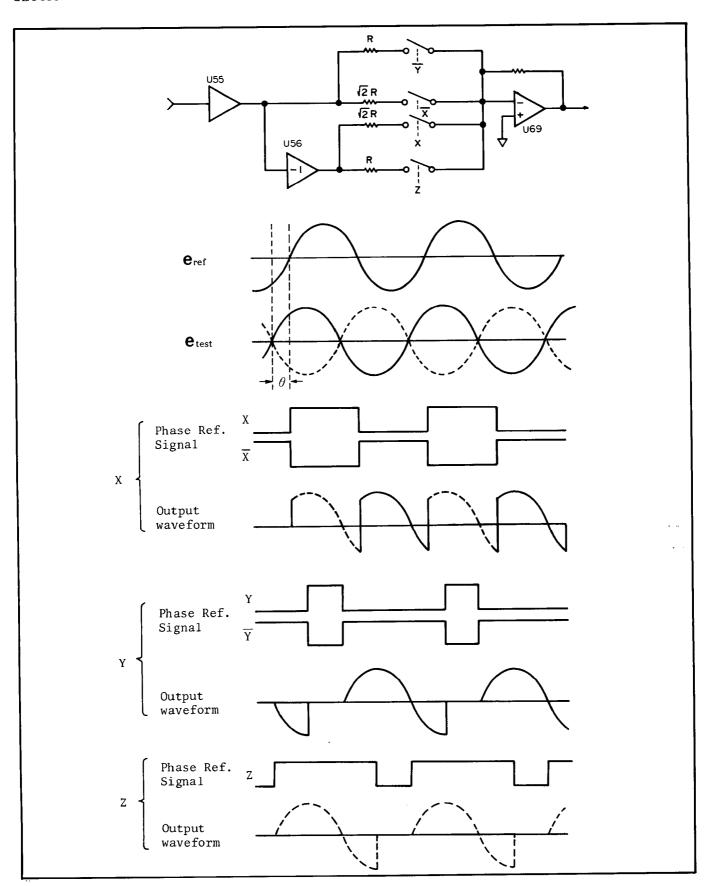


Figure 8-20. Phase Detector Signals.

8-66. PHASE GENERATOR

8-67. The Phase Generator, consisting of a Reference Detector, a Pulse Swallow circuit, and three parallel-to-serial shift registers, produces the synchronized phase reference signals (X, Y, and Z in Figure 8-20) required for phase detection.

8-68. REFERENCE DETECTOR

8-69. The Reference Detector establishes the phase relationship between the $\mathbf{e}_{\rm ref}$ signal and the synchronized phase reference signals used for phase detection. Refer to the simplified schematic and the timing diagram shown in Figure 8-21. It shows how the X phase reference signal is produced. The $\mathbf{e}_{\rm ref}$ signal is first squared and then input to a flip-flop. When the PSCH signal goes HIGH, the flip-flop's Q output goes HIGH at the leading edge of the next REF (squared $\mathbf{e}_{\rm ref}$) pulse. The Q output of the first flip-flop is connected to the D input of a second

flip-flop. With the D input HIGH, the second flip-flop's Q output will go HIGH at the leading edge of the next 8f pulse, generating the REF DET signal, which enables the parallel-to-serial shift register. The shift register outputs one pulse for every eight 8f pulses. The on and off periods of the shift register's output are determined by the parallel inputs. Because an 8f signal (frequency is eight times that of the **C**ref signal) is used, the X phase reference signal cannot be more than ±45° out of phase with the **C**ref signal.

8-70. PULSE SWALLOW

8-71. The Pulse Swallow circuit shifts the phase of the three phase reference signals 45° by disabling the three parallel-to-serial shift registers for one 8f period. Refer to the circuit schematic and timing diagram shown in Figure 8-22. The number of pulse swallows, or more precisely the amount of phase shift, depends on the type of measurement being made. Refer to Table 8-8 and Figure 8-27.

Table 8-8. Phase Detection Signal Control

1) Y Measurement Mode

Measurement Signal	Integration							
	Period 1		Period 2		Period 3 (ESR/G)		Period 3 (D)	
Olghal	Charge	Discharge	Charge	Discharge	Charge	Discharge	Charge	Discharge
e _{ref} (e _{DUT})	-90°	0° or 180°		0° or 180°		0° or 180°		
e _{test} (e _{RR})			90°		0°		0°	90° or -90°

2) Z Measurement Mode

	Integration							
Measurement Signal	Period 1		Period 2		Period 3 (ESR/G)		Period 3 (D)	
Orginal .	Charge	Discharge	Charge	Discharge	Charge	Discharge	Charge	Discharge
eref (err)	-45°	45° or 225°		45° or 225°		45° or 225°		
e _{test} (e _{DUT})			135°		45°		45°	135° or -45°

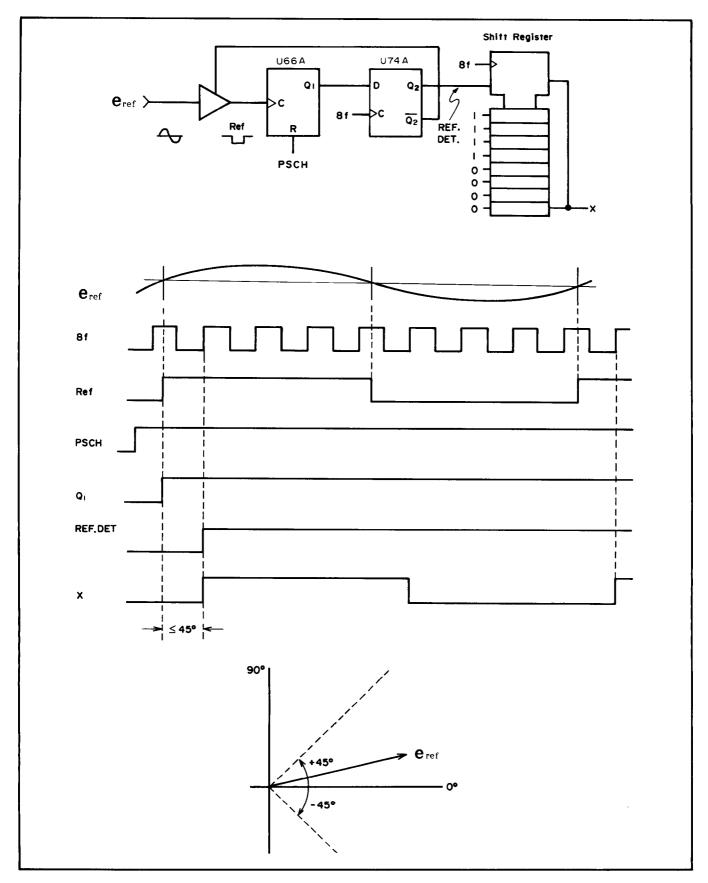


Figure 8-21. Reference Detector Operating Principle.

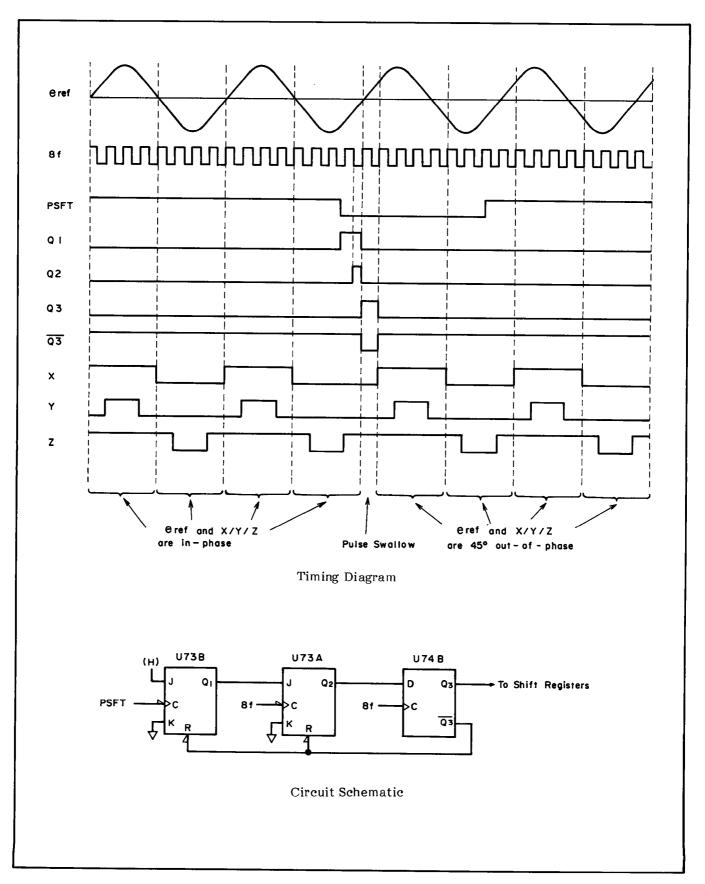


Figure 8-22. Pulse Swallow Operating Principle.

8-72. A-D CONVERTER

8-73. The analog section of the A-D Converter includes an Auto-Zero circuit, Integrator, Auto-Phase Adjust circuit, and Zero Detector. The Auto-Zero circuit and Integrator are on a single hybrid IC. The digital section of the A-D Converter is on the Al board. Only the analog section will be described. Figure 8-23 shows a block diagram of the A-D Converter and related circuits. Figure 8-27 shows the timing diagram for one measurement.

8-74. AUTO-ZERO CIRCUIT

8-75. Auto-zero is performed before each measurement to cancel the offset voltages inherent in the phase detector and integrator. At the start of the auto-zero period, the input of the AM Amplifier is grounded and the AZT signal is brought HIGH, closing S1 and S3. Offset voltages from the phase detector and integrator (S5 is closed, and S4 and S7 are open) charge storage capacitor C155. When a measurement is made, AZT is brought LOW (S2 is closed, and S1 and S3 are open) and voltages output from the integrator are compensated with the voltage held in C155.

8-76. INTEGRATOR

8-77. The integrator charges with the phase detector output signal (vector component of the \boldsymbol{e}_{ref} or \boldsymbol{e}_{test} signal) when input switch S4 is closed (IOFF control signal is LOW). is automatically time integrator charge controlled by the microprocessor in accordance with test frequency, measurement range, test signal level, and measurement speed, as shown in Figure 8-24 and Table 8-9. A short hold time is provided before each charge and discharge period to eliminate any transient response signals incident to switching of the measurement vector signal. The integrator discharges with phase detector output signal (vector component of the eref or etest signal) until its output reaches the voltage determined by the Zero Shift circuit. The feedback loop switch (S5) closes (IRST control signal is HIGH) to keep the discharged when dual-slope integrator integration is not being performed.

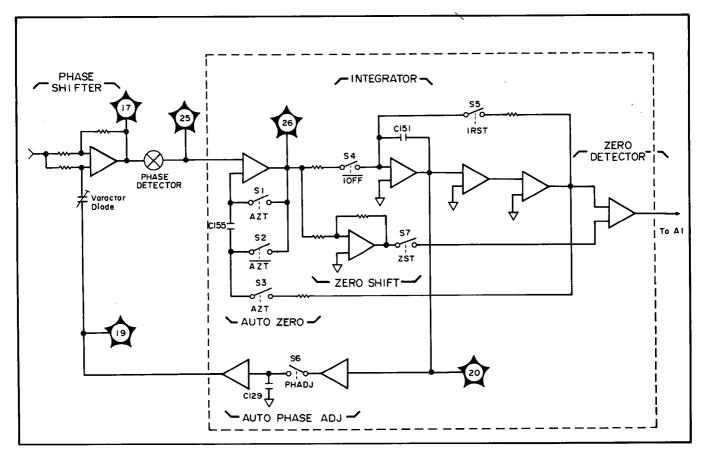


Figure 8-23. A-D Converter Block Diagram.

C-D Measurement

C Range	Test Frequency (Hz)						
	10.0k to 20.0k 20.2k to 200k 202k to 1.00M						
10μF							
lμF	T7 (T3)						
100nF	T3 (T3)						
10nF							
lnF	T1 (T1)						
100pF	(.2)						
10pF							
1pF							

C-ESR/G Measurement

ESR/G	Test Frequency (Hz)			
Range	10.0k to 1.00M			
1MΩ/10μS				
100kΩ/100μS	TO (TO)			
10kΩ/1mS	10 (10)			
1kΩ/10mS				
100Ω/100mS	T3 (T3)			
10Ω/1S	T7 (T3)			

L-D Measurement

L Range	Test Frequency (Hz)						
	10.0k	10.1k to 100k	101k to 1.00M				
1H							
100mH		T5 (T5)					
1 OmH		13 (13)					
1mH		T4 (T4)					
100µН		T2 (T2)					
10µH		T2 (T2)					
IμH							

L-ESR/G Measurement

ESR/G	Test Frequency (Hz)			
Range	10.0k to 1.00M			
100kΩ/100μS	TO (TO)			
10kΩ/1mS	TO (TO)			
1kΩ/10mS	T4 (T4)			
100Ω/100mS	mo (mo)			
10Ω/1S	TO (TO)			

| Z | -θ Measurement

Z Range	Test Frequency (Hz)			
	10.0k to 1.00M			
1МΩ				
100kΩ	T6 (T6)			
10kΩ				
1kΩ				
100Ω	TO (TO)			
10Ω	10 (10)			

Note: The meanings for codes TO through T7 are given in Table 8-9. Codes enclosed in parentheses apply when TEST SIG LEVEL is set to LOW.

Figure 8-24. Integrator Charge Time vs Measurement Range.

SECTION VIII Model 4277A

Table 8-9. Integrator Charge Time vs Frequency

Charge		Test Fr	equency (Hz)		
Time	10.0k	10.1k to 20.0k	20.2k to 100k	101k to 200k	202k to 1.00M	
ТО	a					
Т1		Da fk	$ \begin{array}{c c} \underline{100a} & \underline{1000a} \\ \hline fk & fk \end{array} $			
Т2	10a fk		<u>1000a</u> k <u>fk</u>			
Т3		. ∙ a .0	<u>fk∙a</u> 100		fk·a 1000	
Т4	<u>fk∙a</u> 10	$\frac{\mathbf{fk}}{1}$	• <u>a</u> 00		<u>∙a</u> 00	
Т5	fk∙a		$\frac{\mathbf{fk} \cdot \mathbf{a}}{10} \qquad \qquad \frac{\mathbf{fk} \cdot \mathbf{a}}{100}$		_	
Т6		2a				
Т7	$\frac{\mathbf{fk}}{2}$	<u>·a</u>		(·a 20	<u>fk·a</u> 200	

fk: in kHz

Measurement Speed	SLOW/MED	FAST	
a	5.20ms	1.30ms	

8-78. AUTO-PHASE ADJUST CIRCUIT

8-79. The Auto-Phase Adjust circuit controls the Phase Shifter in the VRD so that precise phase relationships exist between the $\mathbf{e}_{\rm ref}$ signal and the three phase reference signals used for phase detection. Auto-phase adjustment is performed when the test frequency is in the 505kHz to 1MHz region. Refer to the timing diagram given in Figure 8-27 (sheet 2 of 2). The settings for the switches in the A-D converter (see Figure 8-23) during auto-phase adjustment are given below.

\$1: OPEN \$
\$2: CLOSED \$
\$3: OPEN \$
\$4: CLOSED

S5: OPEN S6: CLOSED S7: OPEN and is phase detected using the 90° phase reference signals. If eref is exactly 90° out-of-phase with the phase reference signals, the average level of the phase detector's output will be zero. If a phase error exists between the eref signal and the 90° phase reference signals, the phase detector outputs a signal whose dc content is proportional to the magnitude and direction of the phase error. The auto-phase adjust circuit feeds this dc signal back to the Phase Shifter, where it controls the capacitance of two varactor diodes so that the phase error is minimized. Storage capacitor C129 holds the dc voltage to continuously control the capacitance of the varactor diode while the measurement is performed.

The **e**_{ref} signal is input to the phase detector

8-80. ZERO DETECTOR

8-81. The Zero Detector reverses its output logic (HIGH to LOW or LOW to HIGH) the instant the integrator's output crosses the zero level. This signals the microprocessor that an integration period has been completed. During discharge, a counter on the Al board counts the pulses of a 3.84MHz clock signal. The number of pulses counted represents the ratio of the charge and discharge voltages. The 4277A employs a Zero Shift circuit to intercept any transient signals incident to switching of integrator control. This does not cause measurement error caused by spike noise even if a zero input signal is integrated. The comparison level for zero cross depends on the slope of the discharge signal. The zero shift time, Tc in Figure 8-25, is constant. The microprocessor compensates for the count error caused by Tc.

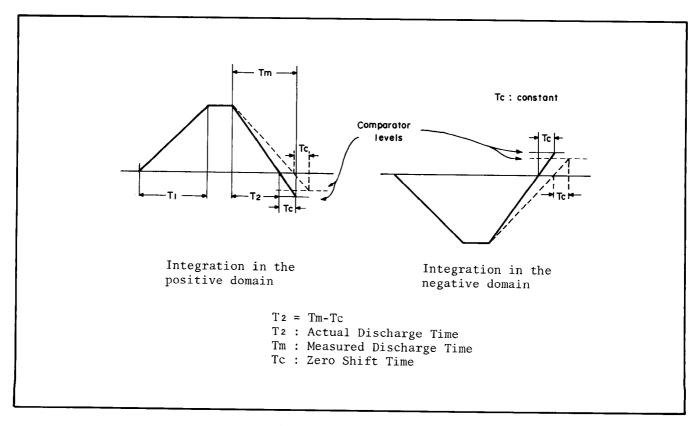
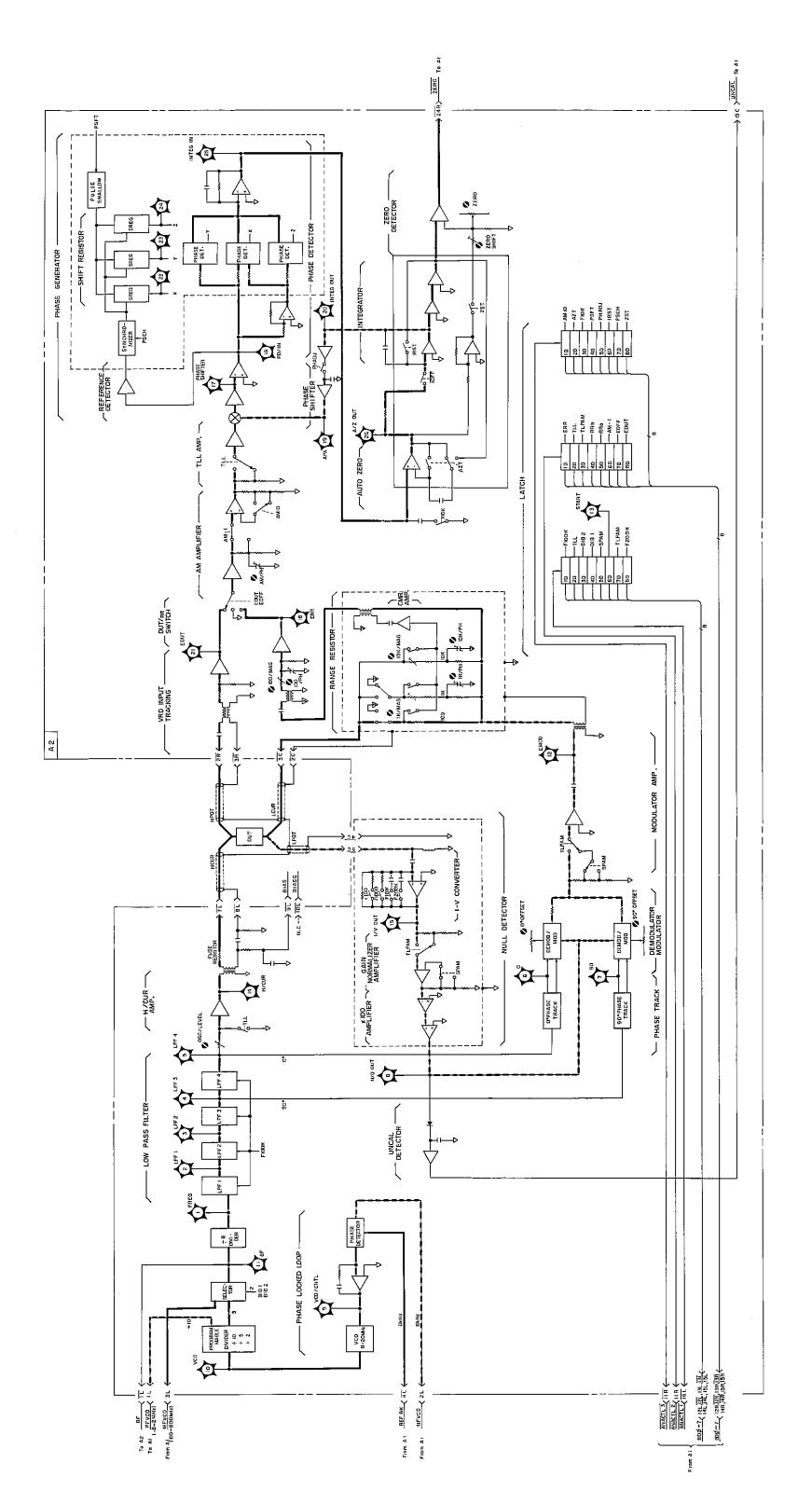
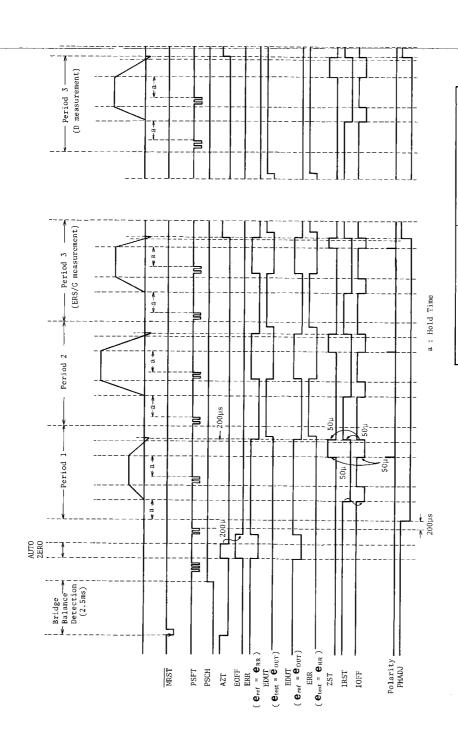


Figure 8-25. Zero Shift.




Figure 8-26. Analog Measurement Section Block Diagram.

ANALOG BLOCK DIAGRAM

8-32

Mode 1 (Frequency : 10k to 500kHz)

Model 4277A

Pulse Width of PSFT

Test Frequency 10.0k to 99.5kHz 100k to 1.00MHz

200μs 20μs

Figure 8-27. Timing Diagram (Sheet 1 of 2).

Mode 2 (Frequency : 505k to IMHz)

Model 4277A

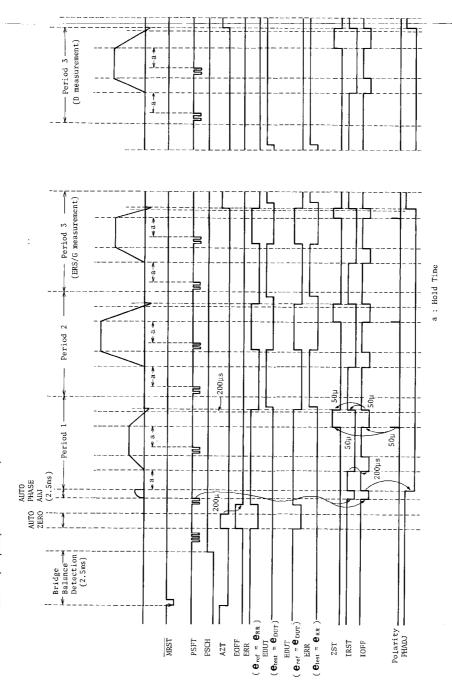


Figure 8-27. Timing Diagram (Sheet 2 of 2).

8-82. DIGITAL CONTROL SECTION

8-83. Figure 8-33 shows the block diagram of the 4277A digital control section. The digital control section consists of the Al Logic board, the A5 Display and Keyboard Control board, and the A21 HP-IB board.

8-84. Al MAIN LOGIC

8-85. The Al board contains the instrument's microprocessor, memory (ROM and RAM), crystal oscillator and divider, VRD control circuits, input port, and front panel control circuits. Overall instrument control—timing for the digital circuits, measurement program selection and execution, response to input commands, etc.—is done by a high speed Z80 microprocessor (AlU4) driven by a 5.76MHz clock. An outline of the digital control operating theory follows.

8-86. The microprocessor, the HP-IB circuits on the A21 board, and the data latches on the A22 board (Option 001) are reset each time the RESET signal (collector of AlQl) goes LOW. RESET goes LOW whenever the +5V supplied to the Al board falls below +4.8V (because the instrument has been turned off or experienced a power loss). Refer to Figure 8-28. AlU2 (voltage detector) detects the low voltage condition and triggers AlU3 (one-shot multivibrator), which turns on AlQl, generating RESET remains active (LOW) for approximately 500ms after the +5V supply rises above +4.8V. AlQ2 and Q3 provide power to the static RAM (A1U12) and charge the 2.4V Ni-Cd battery on the A6 board during normal operation. When RESET goes LOW, Q2 and Q3 are off and the RAM is powered by the battery.

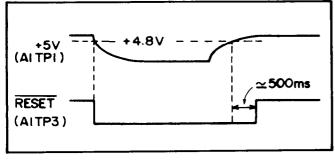


Figure 8-28. Reset Signal.

8-87. MEMORY

8-88. The Program Control ROM has a 24K byte capacity and contains the analog section control programs and digital data processing routines (counting, calculation, data transfer, storage). To accept the measurement control instructions from the Program ROM, the microprocessor sequentially addresses the ROM through the Address Bus Lines. Al U22 controls selection of the required ROM (U5 through U11) by decoding four address lines-Al2 through Al5--into seven ROM gate signals--ROMG1 through ROMG7. Ull and ROM gate signal ROMG7 are used on special option (H03 and H04) The correspondence between instruments. address lines Al2 through Al5 and ROMs U5 through U10 is given in Table 8-10. Addressing of data stored in the selected ROM is handled by the remaining address lines--A0 through All. Data read from the selected ROM is sent to the microprocessor via data bus lines D0 through D7. The microprocessor operates in accordance with the instructions and data stored in the ROMs.

Table 8-10. ROM Addresses

	Addre			
A15	A14	A13	A12	Addressed ROM
LOW	LOW	LOW	LOW	A1U5
LOW	LOW	LOW	HIGH	A1U6
LOW	LOW	HIGH	LOW	A1U7
LOW	LOW	HIGH	HIGH	A1U8
LOW	HIGH	LOW	LOW	A1U9
LOW	HIGH	LOW	HIGH	A1U10

8-89. The microprocessor addresses a 2K byte static RAM (AlUl2) and various data bus control devices--AlU26 (Internal I/O Decoder), AlU41 (External I/O Decoder), and AlU35 (Control Signal Buffer)--to sequentially execute the in the ROMs. The stored programs microprocessor uses the static RAM to store front panel control settings when the instrument off and to temporarily store measurement results and data yielded from calculations. A 2.4V Ni-Cd battery on the A6 board powers the RAM when the instrument is turned off or ac power is removed.

Write enable and output enable for the RAM are controlled by the \overline{WR} and \overline{ROE} signals, respectively. The chip select signal, generated from address line Al5 and the \overline{MREQ} signal, is

output from U24A. ROE enables the ROMs (U5 through U11) also. The IORQ signal enables I/O Decoders and Control Signal Buffer (A1U26, U41, and U35). A1U26, U41, and U35 are selected by address lines A6 and A7. The correspondence between address lines A6 and A7 and the selected control device—A1U26, U41, and U35—is given in Table 8-11.

Table 8-11. Line Control Device Addresses

Address	Lines	Addressed Line
A7	A6	Control Device
HIGH	LOW	AlU41
LOW	HIGH	A1U26
HIGH	HIGH	A1U35

8-90. A1U35 provides five signal lines--ANACTL1 through ANACTL5--which control the data latches in the analog circuits. provides Similarly, A1U41 signal six lines-IOEN0 through IOEN5--which control data transfer to and from other boards via the data bus. For example, when the IOENO line is LOW, data is transmitted between the microprocessor and the HP-IB circuits on the A21 board. Refer to Table 8-12 for the correspondence between address lines A3 through A5 and I/O lines TOENO through IOEN5.

Table 8-12. I/O Enable Signals

Addres	s Lines	5	I/O Enable Signal
A5	A4	А3	,
LOW	LOW	LOW	IOEN0
LOW	LOW	HIGH	TOEN1
LOW	HIGH	LOW	TOEN2
LOW	HIGH	HIGH	IOEN3
HIGH	LOW	LOW	IOEN4
HIGH	LOW	HIGH	IOEN5

8-91. READ/WRITE CONTROL

8-92. The Read/Write $(\overline{RD}, \overline{WR})$ timing control signal is sent to the various storage devices, registers, decoders and the HP-IB interface adapter to control the transfer of data as follows:

Read: Causes a selected register or storage device to output stored data, or sets bus driver or HP-IB Interface Adapter to the drive mode. Microprocessor accesses (Reads) the data sent from the addressed device.

Write: Enables a selected register or RAM to store data, or sets decoder or HP-IB Interface Adapter to the receiver mode. Microprocessor sends (writes) data to the enabled device.

Read/Write control is performed in conjunction with the appropriate address signals to enable the correct device for the data transfer.

8-93. Operation of the microprocessor is interrupted by any one of three interrupt signals: IBINT, TRIGINT and KEYINT. The IBINT line is active (LOW) when an interrupt request is on the HP-IB; TRIGINT is active (LOW) when the instrument is externally triggered; KEYINT is active (HIGH) when a key on the front panel is pressed. These interrupts are detected at the beginning of a measurement cycle or before each voltage-ratio measurement period.

8-94. AlUl is an 11.5200MHz crystal oscillator. Its output is counted down by U29, U30, U31 and U32 to provide the 5.76MHz clock signal for the microprocessor, the 3.84MHz clock signal for the voltage-ratio detector, the 1.92MHz clock signal for key and display control, and the 8kHz reference signal for the phase-locked loop on the A2 board.

8-95. VRD CONTROL

performs voltage-ratio 8-96. The 4277A detection by measuring the time required to charge and discharge the integrator on the A2 board. This is done by AlU39 and related control ICs-U16, U27, and U28. At the start of integration, the ENGT signal goes HIGH, enabling AlU39. Simultaneously, the IOFF signal goes LOW to enable input to the integrator. The integrator starts charging with the voltage from the phase detector, and AlU39 starts counting the pulses of the 3.84MHz clock signal (TCLK) output from AlUl6. At the end of the charge period, whose duration is controlled by the microprocessor and varies depending on test frequency and measurement range (refer to Table 8-9), the OUT2 signal goes LOW, forcing the IOFF signal HIGH.

At the start of the integrator discharge period, AlU39 is cleared and enabled, and then begins counting the pulses of the 3.84MHz clock signal. When the integrator is completely discharged (output reaches the voltage determined by the Zero Shift circuit), the Zero Detector on the A2 board sends the $\overline{\rm ZERO}$ signal, which stops the clock. The time required for the integrator to discharge is indicated by the number in AlU39. See Figure 8-30.

8-97. INPUT PORT

8-98. The Input Port, AlU13 and U14, monitors the status of the CABLE LENGTH Switch and DC BIAS Switch on the front-panel, DC BIAS board installation (Option 001), Trigger, FREQUENCY/DC BIAS Step Control Keys, Bridge Balance condition, Zero Cross, and the SA SELECT Switch (AlS1). The microprocessor accesses the input port via the data bus to read the selected functions after the instrument is turned on and each time a measurement starts.

8-99. FRONT PANEL CONTROL

8-100. AlU25 handles data transfer to and from the A5 board. When a key on the front panel (or on the 16064A, Option 002) is pressed, the KEYINT signal goes HIGH, instructing the microprocessor to read the key status data stored in U25's internal data RAM. The DA and DB output bus lines (DA0 through DA3 and DB0 through DB3) of U25 transfer display data to the cathode drivers on the A5 board.

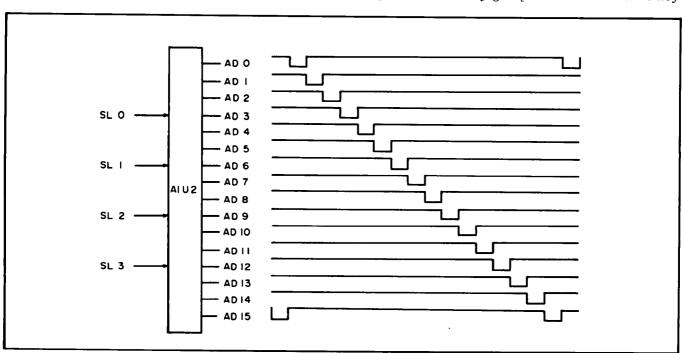
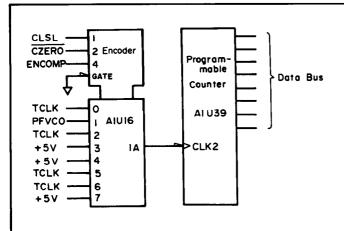
8-101. A5 DISPLAY

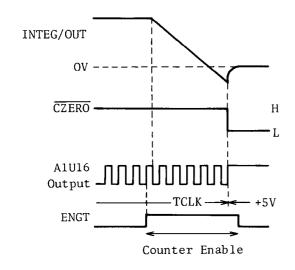
8-102. The A5 board is functionally divided into two sections: the display section and the key control section. The display section consists of a decoder (U2), four anode drivers (U1, U5, U6, U7), an LED cathode driver (U3), a seven-segment display cathode driver (U4, U9), and various LEDs and seven-segment displays.

8-103. A5U2, anode scan decoder, decodes four address signals, SL0 to SL3, sent from the Al board into sixteen anode drive signals, AD0 to AD15. Each anode drive signal controls one group of display elements. AD7, for example, drives the anodes of DS8, DS52, DS53, and DS54. Accordingly, the display elements of each group are lit for a period equal to 1/16 of the display cycle time. See Figure 8-29. The cathodes of all LEDs are driven by U3. Each LED lights when its cathode drive signal is LOW and its anode drive signal is HIGH.

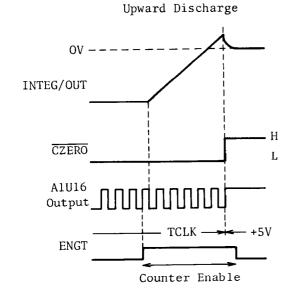
The numeric displays, DS1 through DS14, are driven by U4 and U9 in response to the BCD data sent from the A1 board via data lines DB0 through DB3. The DB signals address the display segment data stored in U9 (256-bit ROM). Display segment signals, $\overline{\text{SEGA}}$ through $\overline{\text{SEGG}}$, drive the cathodes of the displays.

8-104. AlU8 decodes SL0, SL1, and SL2 into eight key scan signals (KY0 through KY7), which sequentially enable individual key groups. See Figure 8-31. A key group is enabled when its key


Figure 8-29. Al U2 Anode Scan Decoder Output.

Model 4277A SECTION VIII



Select Input		A1U16	
4	2	1	Output (1A)
LOW	LOW	LOW	TCLK
LOW	LOW	HIGH	PFVCO
LOW	HIGH	LOW	TCLK
LOW	HIGH	HIGH	+5V
HIGH	LOW	LOW	+5V
HIGH	LOW	HIGH	TCLK
HIGH	HIGH	LOW	TCLK
HIGH	HIGH	HIGH	+5V

Downward Discharge

Control Signal			A1U16
ENCOMP	CZERŌ	CLSL	Output
HIGH	HIGH	LOW	TCLK
HIGH	LOW	LOW	+5V

Control Signal			AlU16
ENCOMP	CZERO	CLSL	Output
HIGH	LOW	HIGH	TCLK
HIGH	HIGH	HIGH	+5V

Figure 8-30. VRD Control.

scan signal is LOW. When a key is pressed (for example, the CKT MODE key), the corresponding output line--RLO, RLI, RL2, RL6, and RL7--goes LOW (RLI for the CKT MODE key) the instant the related key scan signal from U8 goes LOW. In addition to RLO, RL1, RL2, RL6, and RL7 there are three similar signals--CRL3, CRL4, CRL5--from the keyboard of the 16064A (Option 002). These eight signal are encoded by A1U25. The encoded 3-bit data is stored in a register in A1U25, where it can be read by the microprocessor via the data bus.

8-105. A21 HP-IB

8-106. All HP-IB interface functions are handled by A21U4 HP-IB interface chip. The interface chip controls the "handshake" between the microprocessor and external HP-IB

equipment. The architecture of the interface chip's internal register is shown in Figure 8-32. The eight pairs of registers in the interface chip store data transferred to and from peripherals as directed by asynchronous operation of the control bus signals. Each register pair corresponds to one line of the 8-bit data bus. The address lines (BA0 to BA2) select the internal register of the interface chip which is to store or write out the data.

When the instrument is turned on, the $\overline{\text{IOEN5}}$ control line is set to LOW. The microprocessor reads the HP-IB address stored in A21Ul and then displays the address, in decimal, on the front panel. When an interrupt control request from the external HP-IB controller pulls down the $\overline{\text{IBINT}}$ output line of the interface chip, the microprocessor responds to the interrupt input.

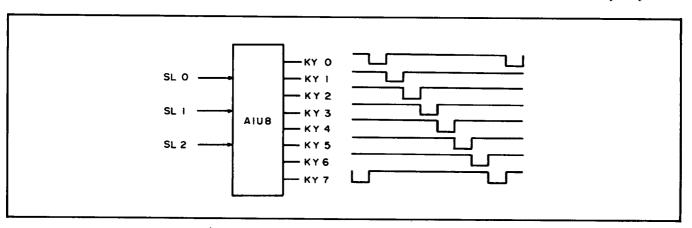


Figure 8-31. AlU8 Key Scan Decoder Output.

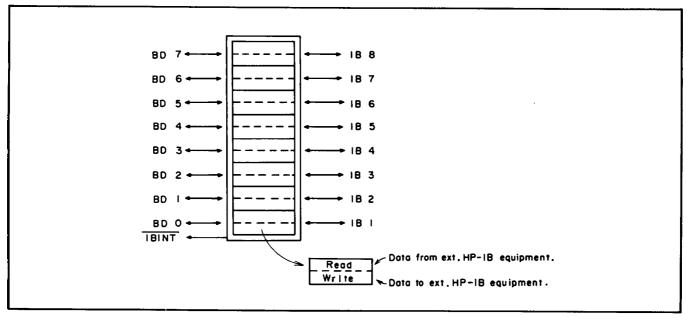


Figure 8-32. HP-IB Interface Adapter Internal Register Configuration.

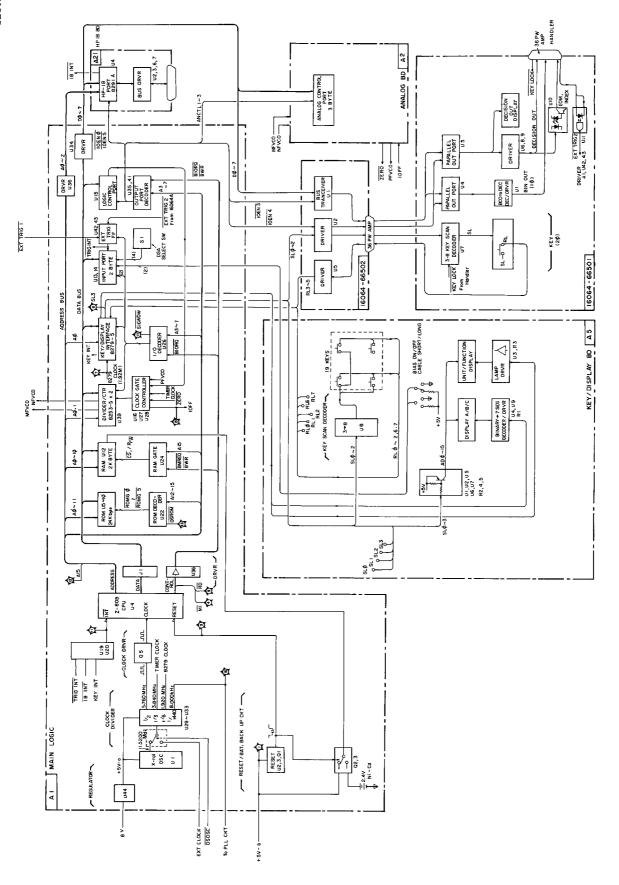


Figure 8-33. Digital Control Section Block Diagram.

Model 4277A

8-43

8-107. OPTIONS

8-108. The theory of operation for the 4277 A's optional circuits is outlined in the following paragraphs.

8-109. OPTION 001 INTERNAL DC BIAS (A22)

8-110. The A22 board primarily contains a DAC (A22U3) and an output amplifier, as shown in Figure 8-34. The DAC outputs a dc voltage whose polarity and magnitude are determined by the reference voltage, V $_{\text{ref}}$, and the digital data sent from the microprocessor and stored in latches U1 and U2. Output voltage is calculated as follows:

Vout =
$$-V \operatorname{ref} \cdot \sum_{n=1}^{10} Bn \cdot 2^{-n}$$

(Bn: 0 or 1)

where V ref is determined as follows:

Internal DC Bias Voltage Range	Vref
.00V to 40.0V	-6.3V
01V to -40.0V	+6.3V

The output from the DAC is shown in Figure A.

V ref is switched by an analog switch controlled by Data Bus lines BD6 and BD7 via the latch A22U2. The two latches, A22U1 and U2, are successively enabled by clock signals $\overline{\text{IOEN1}}$ and $\overline{\text{IOEN2}}$ to output digital data to the DAC and to control the analog switches. Another analog switch selects the attenuation factor — x1 or x1/5 — in accordance with the internal dc bias voltage setting as follows:

Internal DC Bias Voltage Range	Attenuator	
±(.00V to 9.99V)	x 1/5	
±(10.0V to 40.0V)	x 1	

The DAC output voltage shown in Figure A is attenuated by a xl or xl/5 attenuator to obtain the linear characteristic shown in Figure B. This attenuated voltage is amplified by the x8 output amplifier.

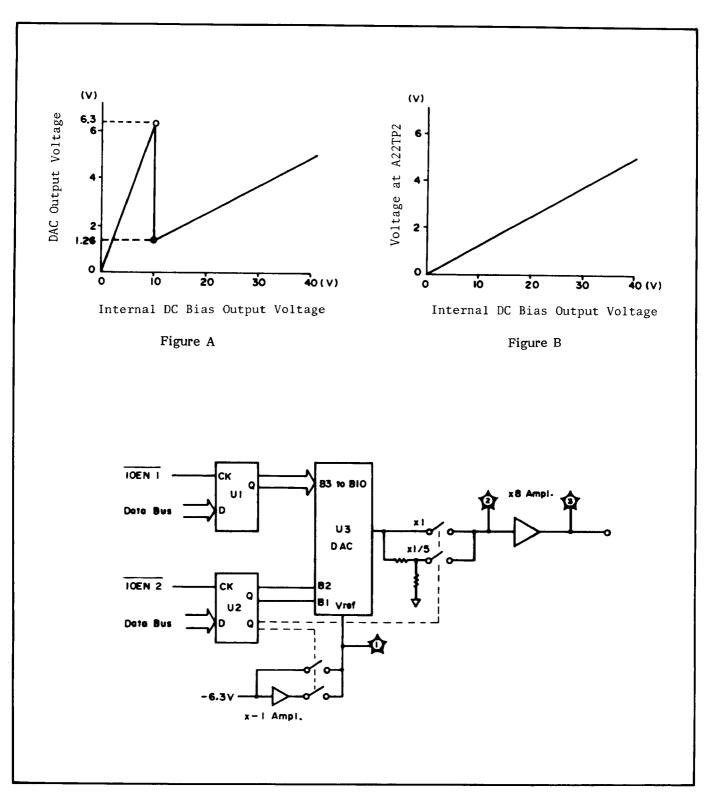


Figure 8-34. A22 Board Block Diagram.

Model 4277A SECTION VIII

8-111. TIMING DIAGRAM DISCUSSION

8-112. Figure 8-27 shows the timing diagram for the various signals necessary for VRD operation. A brief explanation of the signals shown in the diagram is given below. When the instrument is triggered (internally or externally), bridge balance detection is performed for at least 2.5ms. The UNCAL signal can be either HIGH or LOW during the bridge balance detection period. If the bridge is not balanced at the end of this period, UNCAL will be LOW, instructing the microprocessor to wait an additional 20ms (max.). If, after the additional 20ms period, the bridge is still not balanced, the microprocessor will display OF or UF on DISPLAY A. If the bridge becomes balanced at any time during the additional 20ms period, the measurement will begin. At the end of the bridge balance detection, the PSCH signal goes HIGH. Auto Zero is performed when the AZT signal goes HIGH. The time required for Auto Zero depends on test frequency. Refer to the table given in Figure 8-27, sheet 1 of 2.

If the test frequency is 505kHz or higher, Auto Phase Adjust will be performed after Auto Zero. IRST and IOFF are both LOW during the 2.5ms required for Auto Phase Adjust. After Auto Zero and Auto Phase Adjust, the A-D converter is operated three times to measure the vector-voltage ratios in accordance with the programmed measurement sequence. and discharge voltages are determined by the ERR and EDUT signals. Integration is performed while the IOFF signal is LOW. Before the integrator is discharged, a polarity check is performed to determine the discharge direction. During discharge, the ZST signal goes HIGH and Zero Shift is performed. The PSFT (phase shift) signal goes LOW briefly before Auto Zero, Auto Phase Adjust, integrator charge, and integrator discharge. The number of PSFT pulses is controlled so that the phase reference signals used for phase detection have the correct phase angle. Refer to Table 8-8. The pulse width of the PSFT signal depends on the test frequency. Refer to the table given in Figure 8-27, sheet 1 of 2.

8-113. TROUBLESHOOTING

8-114. Board level isolation of most instrument failures can be quickly accomplished by using the troubleshooting flow diagram given in Figure 8-40. When the faulty board has been isolated, proceed to the component level troubleshooting flow diagram for that board. Table 3-3 lists error codes for the ROM/RAM Self Test, which is performed when the instrument is turned on.

8-115. WARNINGS and CAUTIONS

8-116. Warnings and cautions are given throughout the troubleshooting and repair procedures to ensure the safety of service personnel and to protect the instrument against possible damage.

CAUTION

THE OPENING OF COVERS OR REMOVAL OF PARTS, EXCEPT THOSE TO WHICH ACCESS CAN BE GAINED BY HAND, IS LIKELY TO EXPOSE ELECTRICALLY LIVE PARTS AND TERMINALS.

THE INSTRUMENT SHOULD BE DISCONNECTED FROM ALL VOLTAGE SOURCES BEFORE ANY ADJUSTMENT, PARTS REPLACEMENT, OR MAINTENANCE/REPAIR, FOR WHICH THE INSTRUMENT MUST BE OPENED, IS PERFORMED.

IF ADJUSTMENT, MAINTENANCE, OR REPAIR MUST BE PERFORMED WITH VOLTAGE APPLIED, IT SHOULD BE PERFORMED BY QUALIFIED SERVICE PERSONNEL AWARE OF THE HAZARDS INVOLVED.

WARNING

WHENEVER IT IS LIKELY THAT THE PROTECTION PROVIDED BY THE FUSES HAS BEEN IMPAIRED. THE INSTRUMENT MUST BEMADE INOPERATIVE AND MUST BE SECURED **AGAINST** ANY UN-INTENDED OPERATION.

CAUTION

CAPACITORS INSIDE THE INSTRUMENT MAYMAINTAIN CHARGE EVEN IF THE INSTRUMENT HAS BEEN DISCONNECTED FROM ALL VOLTAGE SOURCES FOR AN EXTENDED PERIOD. BE SURE THAT ONLY FUSES OF THE REQUIRED RATES CURRENT AND OF SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED **FUSES** OR SHORT-CIRCUITING OF **FUSE** HOLDERS MUST BE AVOIDED.

SECTION VIII Model 4277A

8-117. REPAIR

WARNING

DISCONNECT THE INSTRUMENT FROM THE AC SOURCE BEFORE PROCEEDING WITH REPAIR.

8-118. Board assembly locations are shown in Figure 8-36. Graphic symbols used in the schematic diagrams are explained in Figure 8-37.

8-119. A5 DISPLAY BOARD DISASSEMBLY

8-120. To troubleshoot or replace a component on the A5 Display board or on the front panel assembly, perform the following procedure.

- (1) Remove the top cover.
- (2) Carefully remove the top trim strip from the front frame (use a screwdriver to lift out the trim).
- (3) Remove the three screws from the top of the front frame.
- (4) Stand the instrument on its side.
- (5) Remove the three screws from the bottom of the front frame.
- (6) Firmly press the front panel assembly forward from inside the instrument until it is clear of the frame. Do not allow the cables connected between the front panel and the mother board to become taut. See Figure 8-35.
- (7) Remove the eleven screws securing the A5 board to the front panel assembly.

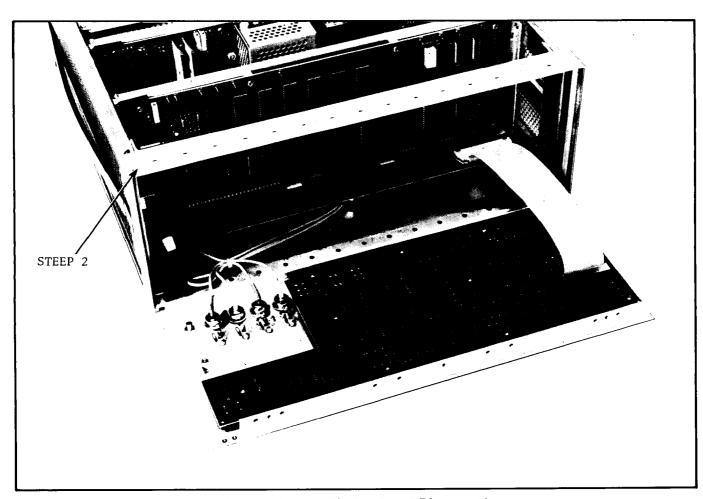


Figure 8-35. A5 Display Board Disassembly.

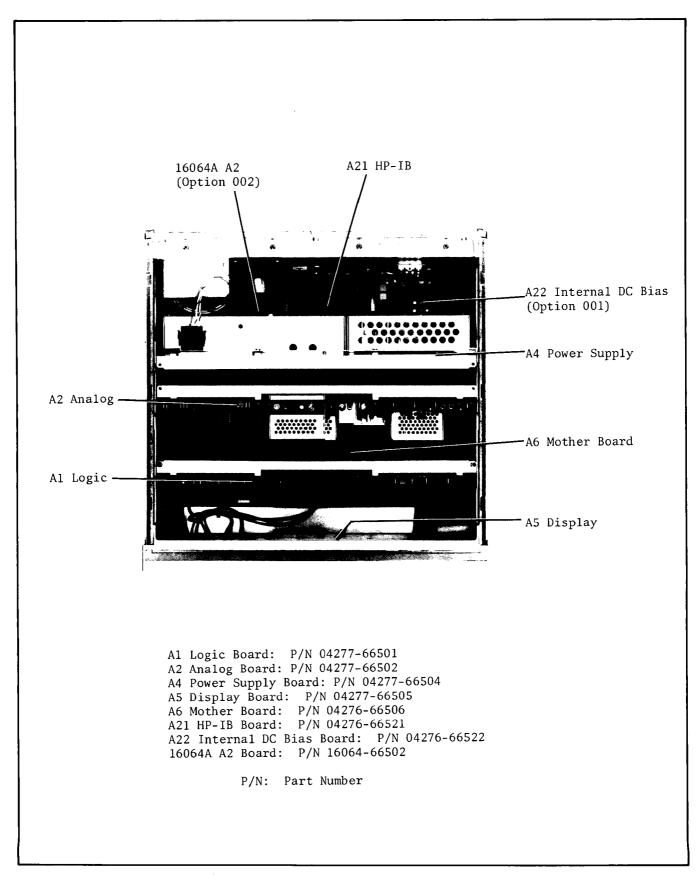


Figure 8-36. Assembly Locations (Top View).

P/0	Part of.
0	Knob control.
9	Screwdriver adjustment.
	Circuit assembly boarderline.
*	Asterisk denotes a factory selected value. Value shown is typical, part may be omitted.
"	Bead inductance.
0	Circuit board pattern inductance.
	Heavy line indicates main signal path.
	Heavy dashed line indicates main feedback path.
₹ CW	Wiper moves towards CW with clockwise rotation of control (as viewed from shaft or knob).
单	Numbered test point. Measurement aid provided.
-947	Denotes wire color code. Code used is the same as the resistor color code (e.g., 9.4.7 denotes white/yellow/violet).
	Encloses front panel designations.
[]	Shielded area.
Ŧ	Indicates direct conducting connection to earth.
	Indicates conducting connection to chassis or frame.
\Rightarrow	Indicates circuit common connection.

Figure 8-37. Schematic Diagram Notes.

8-121. PRODUCT SAFETY CHECKS

WARNING

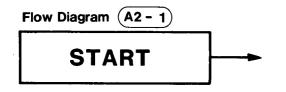
WHENEVER IT APPEARS LIKELY THAT SAFETY PROTECTIVE PRO-VISIONS HAVE BEEN IMPAIRED. THE INSTRUMENT MUST BEMADE INOPERATIVE AND MUST SECURED **AGAINST** ANY UNINTENDED OPERATION. SAFETY **PROTECTION** MAYBE COM-PROMISED IF, FOR EXAMPLE:

- -- THE INSTRUMENT SHOWS VISIBLE DAMAGE.
- -- THE INSTRUMENT FAILS TO PERFORM THE INTENDED MEASUREMENT.
- -- THE INSTRUMENT HAS UNDERGONE PROLONGED STORAGE UNDER UNFAVORABLE CONDITIONS.
- THE INSTRUMENT HAS SUFFERED SEVERE STRESS DURING SHIPMENT.

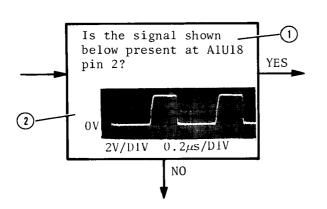
8-122. The following five checks are recommended to verify the product safety of the 4277A instrument (these checks may also be done to check for product safety after troubleshooting and repair). When such checks are needed, perform the following:

- (1) Visually inspect the interior of instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.
- (2) Using a suitable ohmmeter, measure the resistance from the instrument's chassis to the ground pin on the power cord plug. The reading must be less than 0.5 ohms. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.
- (3) Check the GUARD terminal on the front panel using procedure (2).
- (4) Disconnect the instrument from the power source. Turn power switch to on. Measure the resistance from the instrument's chassis to line and neutral (tied together). The minimum acceptable resistance is two

megohms. Replace any component which fails or causes a failure.


(5) Verify that the line fuse is installed and that it is of the correct rating.

- FLOW DIAGRAM NOTES -


Digital Section Troubleshooting Notes

There are ten digital section troubleshooting flow diagrams—nine for the Al Logic Board and one for the A5 Display board. These flow diagrams provide the instructions, signature analyzer control settings, and signature analyzer probe and connection points necessary for component level troubleshooting. Signature Analysis is used to troubleshoot the Digital Section of the 4277A. If you are not familiar with signature analysis, refer to Figure 8-39. It gives a brief description of the technique.

Troubleshooting Flow Diagram Notes

Indicates the lead-in, or initial, troubleshooting flow diagram for a faulty board isolated by the Board Isolation Flow Diagram.

- 1 Compare the actual (observed) signal with the one given in the figure (2).
- 2 Connect the 1740A (recommended oscilloscope) to AlU18 pin 2. Set the 1740A's controls as follows when using a 10:1 divider probe:

VOLT/DIV 0.2 TIME/DIV 0.2µs

Figure 8-38. Flow Diagram Notes (Sheet 1 of 2).

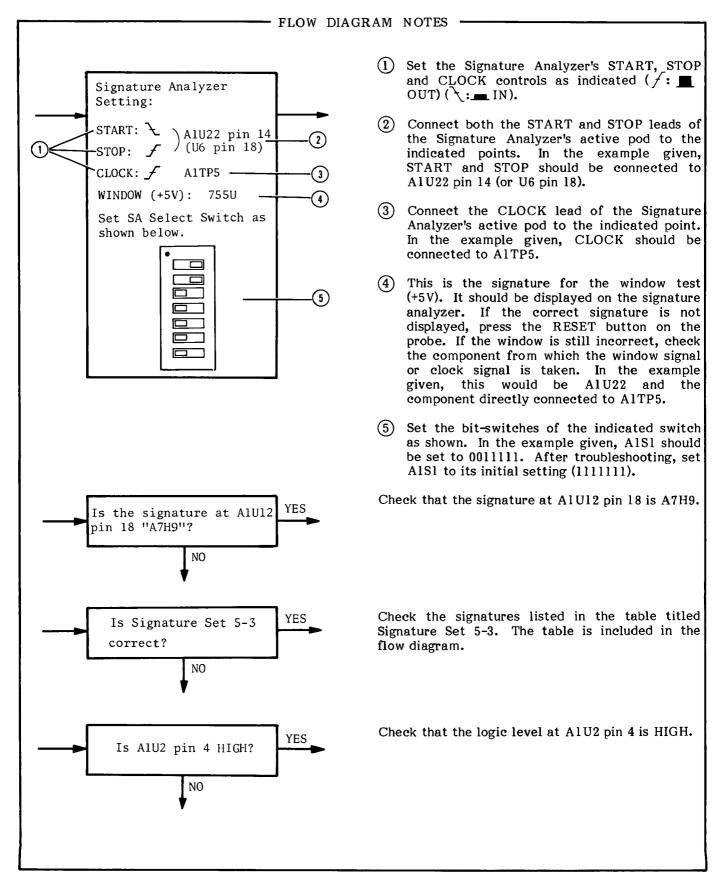


Figure 8-38. Flow Diagram Notes (Sheet 2 of 2).

Signature Analysis

Signature Analysis is a unique technique for component-level troubleshooting. The signature analyzer detects and displays the unique digital signature of the data at a given node in the circuit under test. By comparing the actual signature to the correct one, the service technician can quickly back-trace to the faulty node, and, ultimately, to the faulty component. To represent the signature, a nonstandard character set (0123456789 ACFHPU) was chosen for readability and compatibility with 7-segment displays.

Stated simply, the signature analyzer displays a compressed four-digit "fingerprint" of the data stream present at a node. This "fingerprint" is unique for a good node. Any fault associated with a device on that node will force a change in the data stream and, consequently, result in an incorrect signature. If, for example, the signature at the input of a device is correct but the signature at the output is not, the device is regarded as faulty and should be replaced.

This technique is especially useful in troubleshooting microprocessor based instruments like the 4277A, where data streams are long and complex and where there are no conventional means to efficiently troubleshoot to the component level.

The signature analyzer's active logic probe and active pod detect and develop the signature for display on the signature analyzer. The logic probe is applied to the desired node in the circuit under test and transfers the data to the signature analyzer. The four leads on the active pod are connected to appropriate points on the 4277A, and provide the necessary START, STOP, and CLOCK signals and GND reference. The START signal opens the measurement "window" and instructs the signature analyzer to prepare to receive data from the logic probe; the STOP signal closes the "window." The CLOCK signal provides the appropriate measurement timing pulses. Probe points; connection locations for START, STOP, and CLOCK; and control settings for the signature analyzer are given in the troubleshooting flow diagrams.

MEASUREMENT GATING EXAMPLE, POSITIVE EDGE START, STOP, AND CLOCK

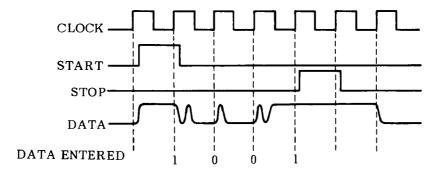
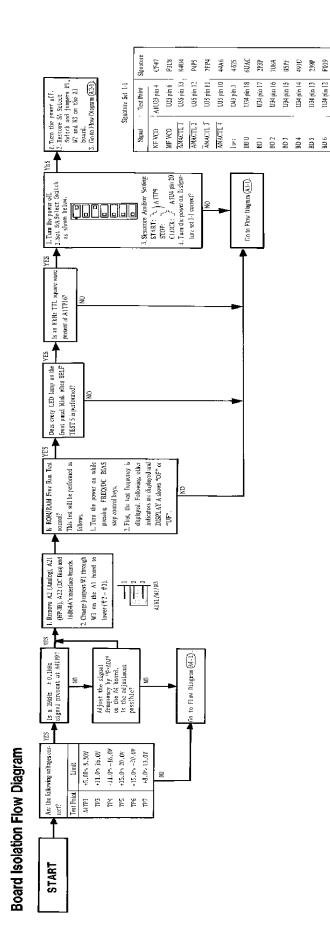



Figure 8-39. Signature Analysis.

491C 339P F019

U34 pin 14 134 pin 12

U34 pin 13

195C PPA0 95571

10EN 3

U41 pin 14 U41 pin 13 C41 pin 12 U41 pin 11

A8A3 C933

C41 pin 10

H193 CLSF

10年前11 1341 min 115

7 00

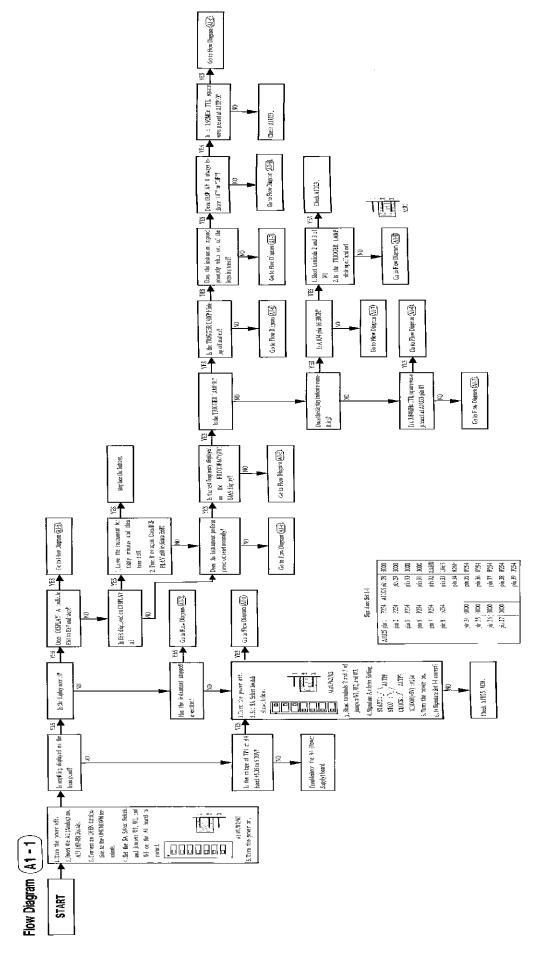

10EN 0 T N3101 TOFN ?

Figure 8-40. Board Isolation Troubleshooting Flow Diagram.

Board Isolation Troubleshooting Flow Diagram

SEE INSIDE

Digure 8-41, Al LOGIC Board Two'sleshnoting Flow Diagram (Steet 1 of 7).

SECTION VIII

Model 4277A

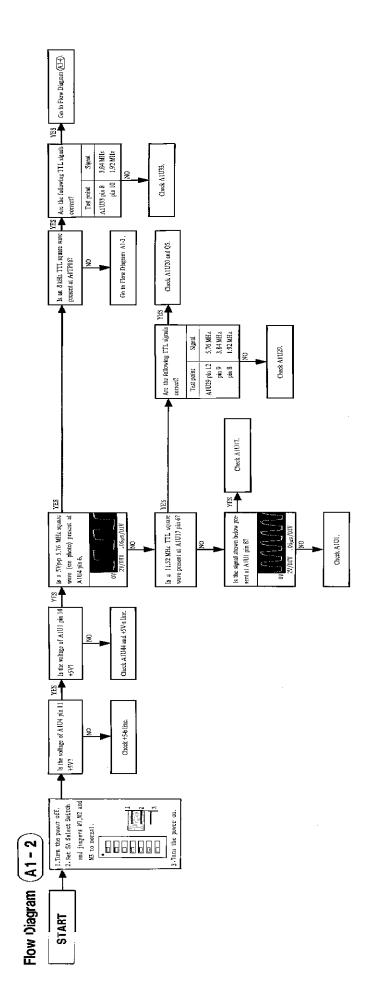


Figure 8-41, Al LOGIC Board Troubleshooting Flow Diagram (Sheet 2 of 7).

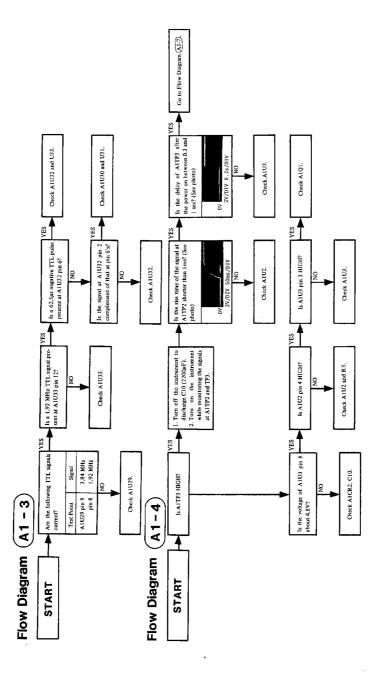


Figure 8-41. Al LOGIC Board Troubleshooting Flow Diagram (Sheet 3 of 7).

Model 4277A

SECTION VIII

Model 4277A

8-60

0 0

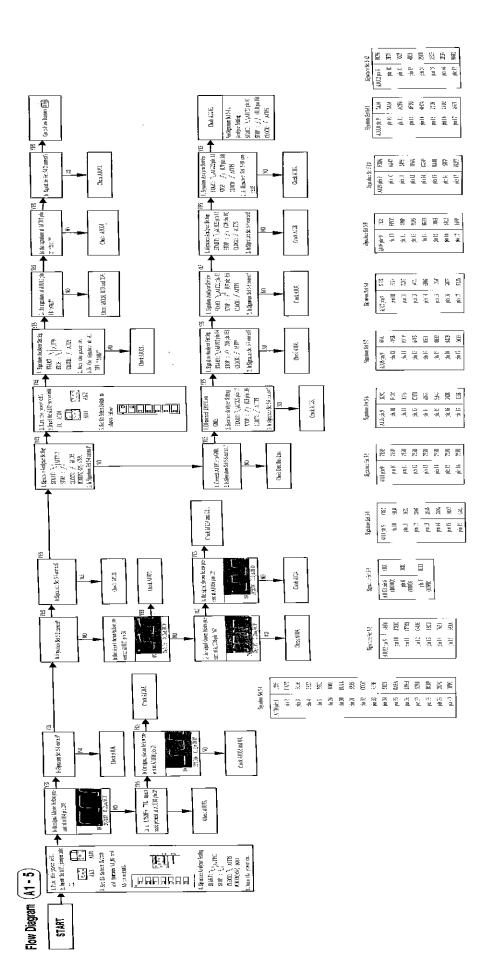
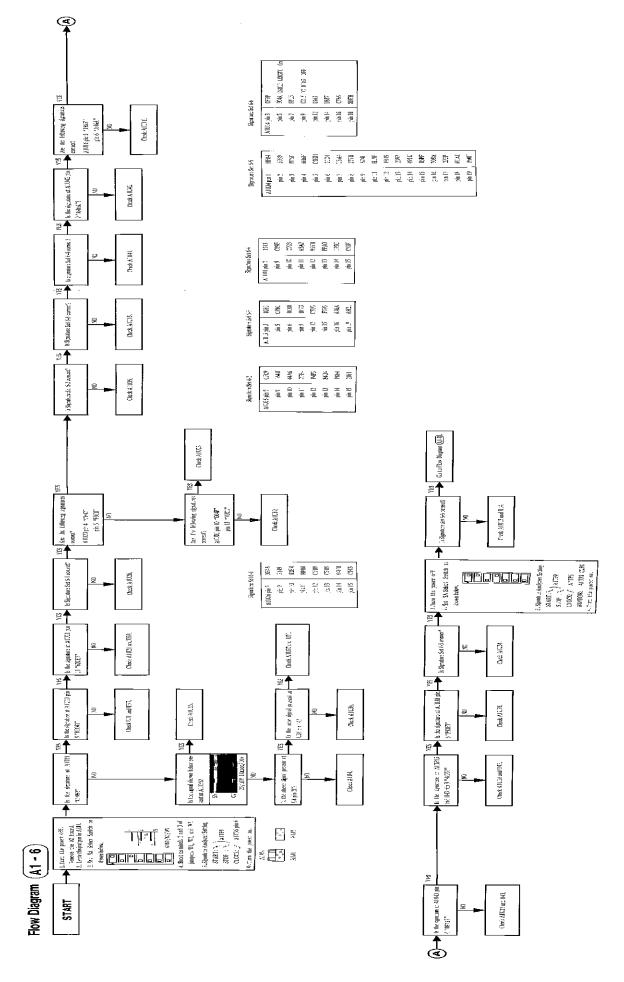



figure 8-41. Al LOGIC Board Tranblesbooting Flow Diagram (Sheet 4 of 1).

SECTION VIII

Model 4277A

Pigure 8-41. Al LOCAC Board Troublest coting Flow Diagram (Sheet 5 of 7).

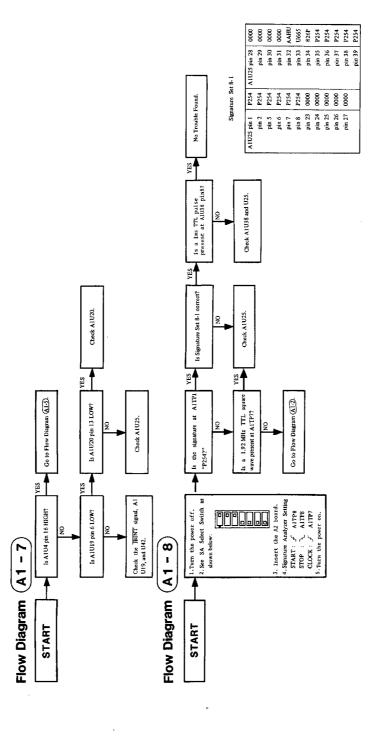


Figure 8-41. Al LOGIC Board Troubleshooting Flow Diagram (Sheet 6 of 7).

Model 4277A

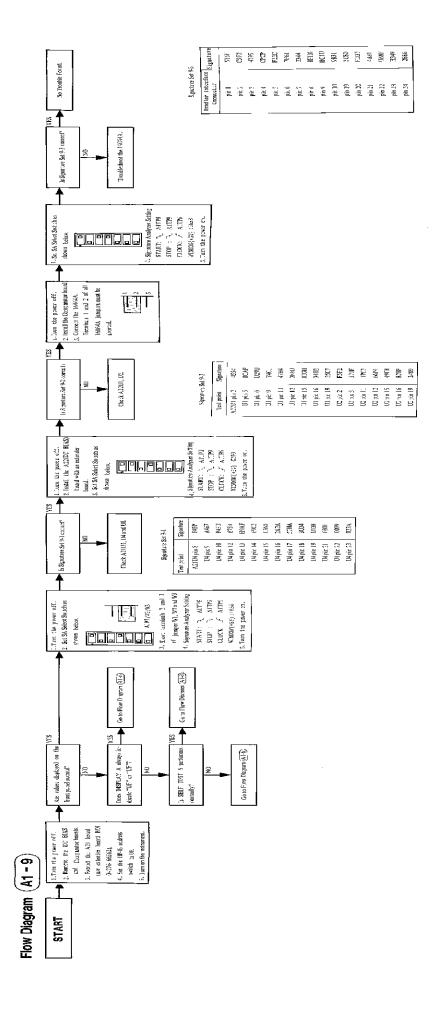


Figure 8-41. A. LOGIC Board Troubleshooting Plow Diagram (Sheet 7 of 7).

S

7 of 7)

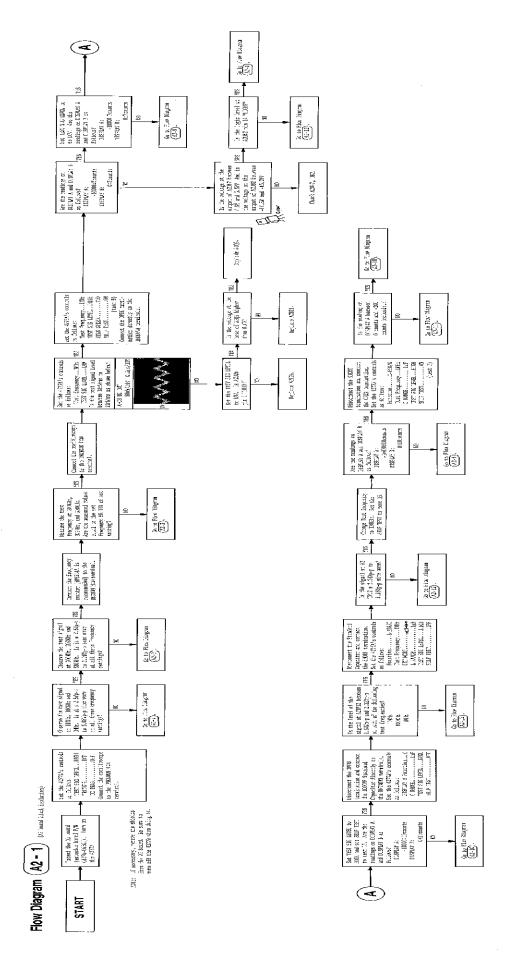


Figure 9-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet) of 15).

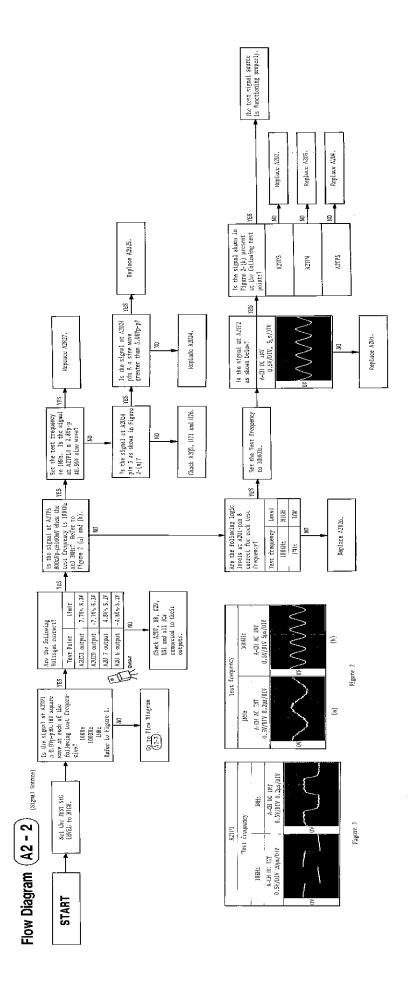


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 2 of 15).

Signal Source

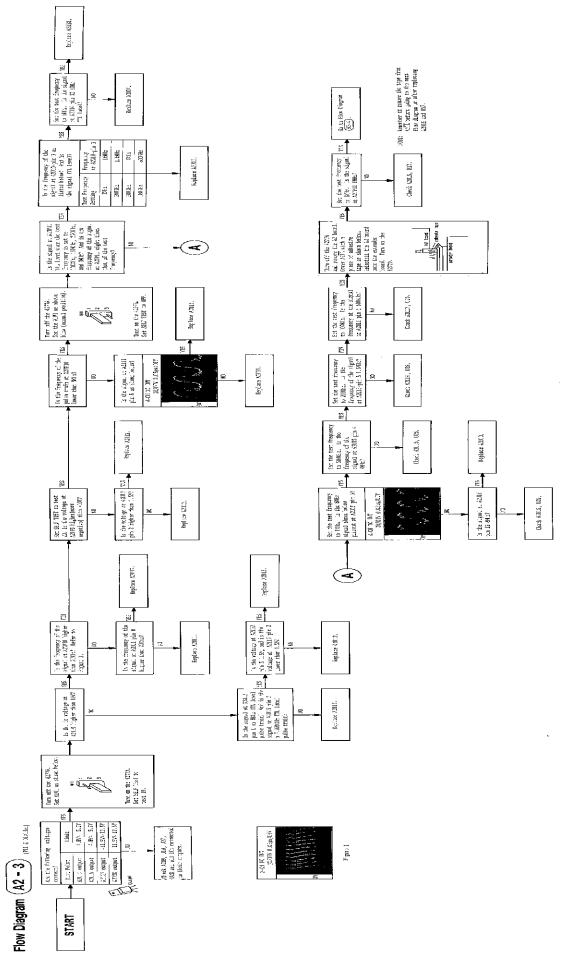


Figure 8-42. At ANALOG Board Troubleshooting Flow Diagram (Sheet 3 of 15).

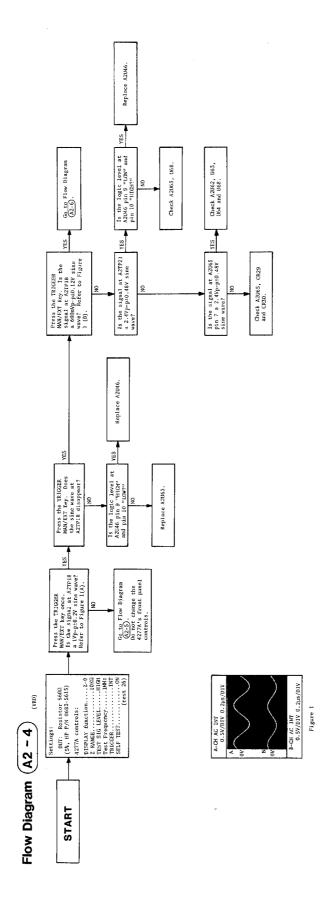


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 4 of 15).

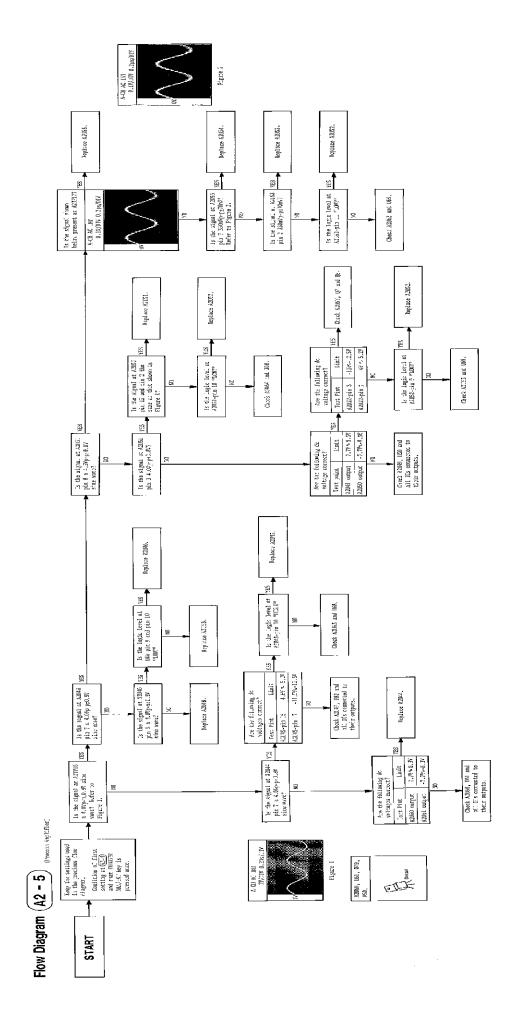


Figure 8-42. A2 ANALOG Board Troublashooting Flow Diagram (Sheet 5 of 15),

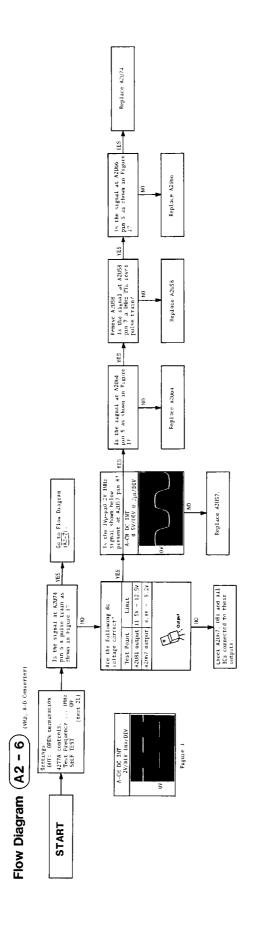


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 6 of 15).

Model 4277A

SEE INSIDE

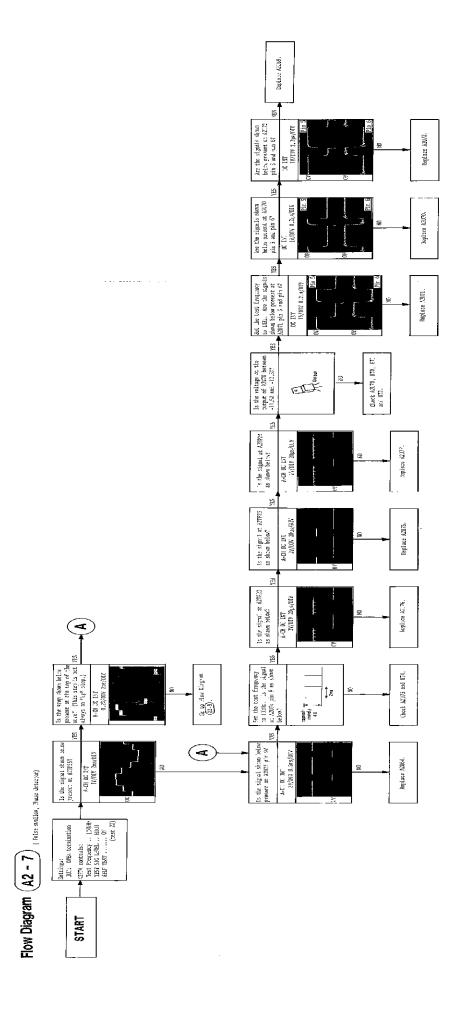


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sneet 7 of 13).

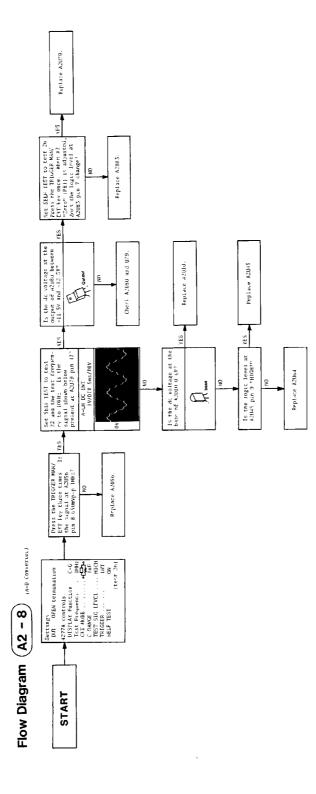
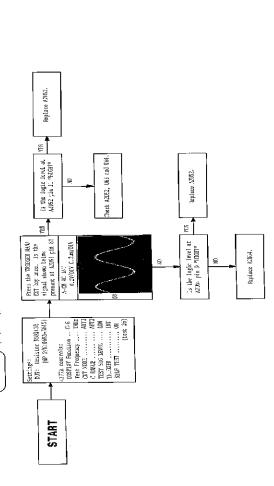
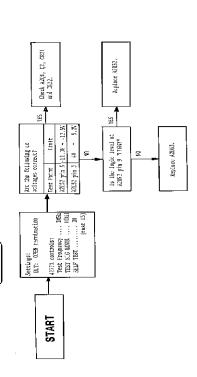




Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 8 of 15).

Flow Diagram (A2 - 9) (XE, TLL Sup)

Flow Diagram (A2 - 10)

Flow Diagram (A2 - 11

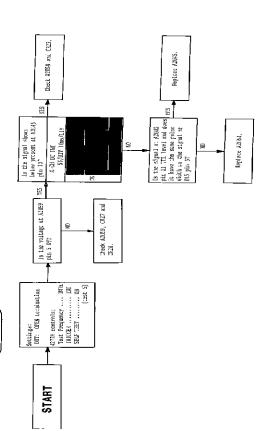


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 9 of 15).

SECTION VIII

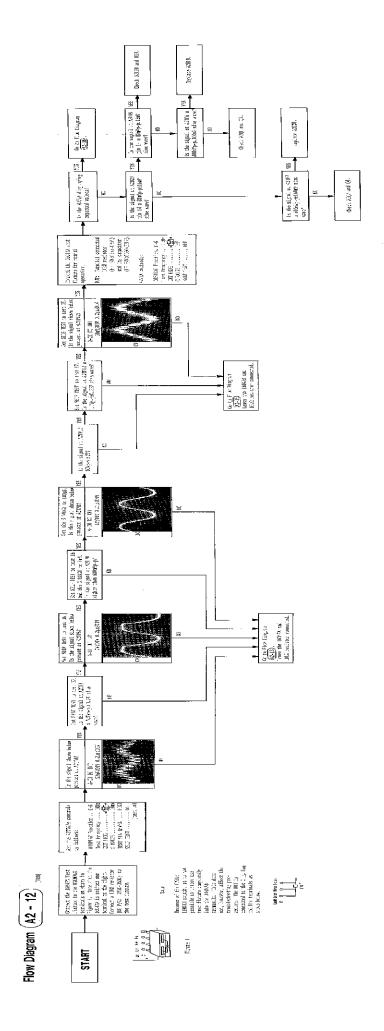


Figure 8-42. At ANALOG Board Troubleshooting Flow Diagram (Sheet 10 of 15).

TRE

Troubleshooting Flow Diagram (Sheet 10 of 15)

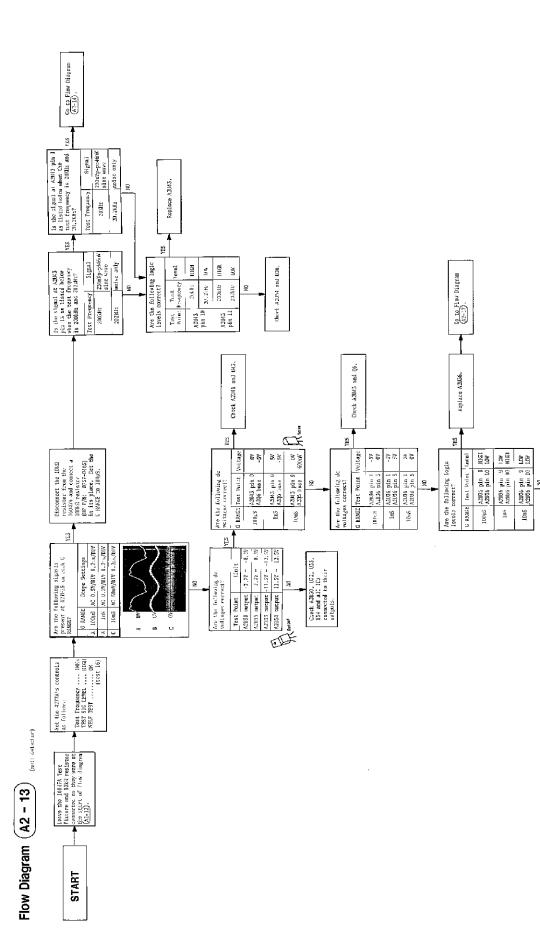


Figure 8-42, A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 11 of 15).

Check A2065 and 147.

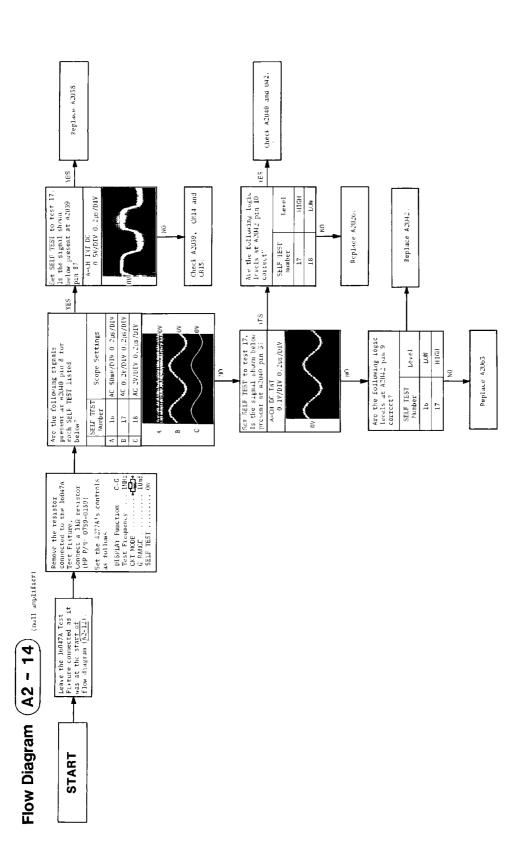


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 12 of 15).

SECTION VIII

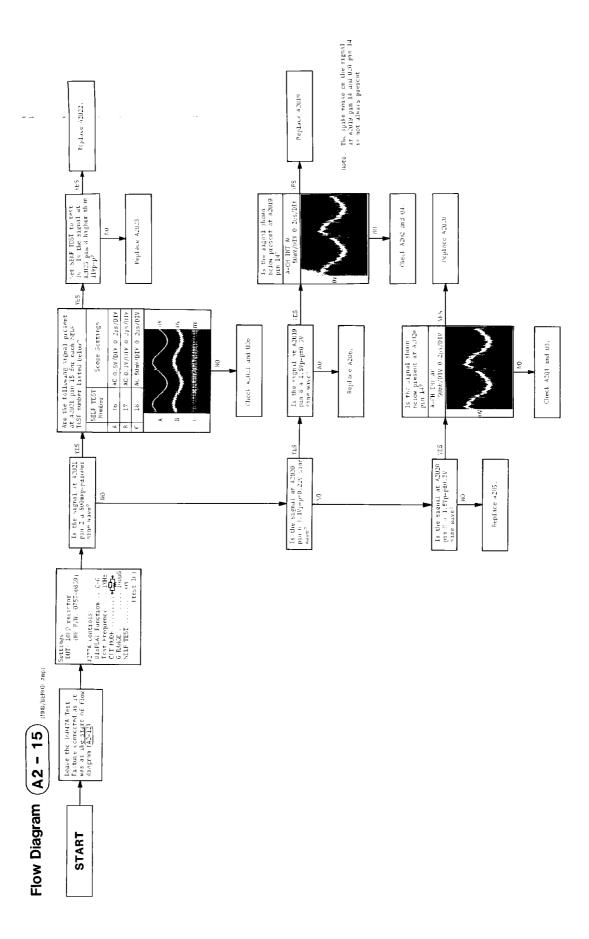


Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 13 of 15).

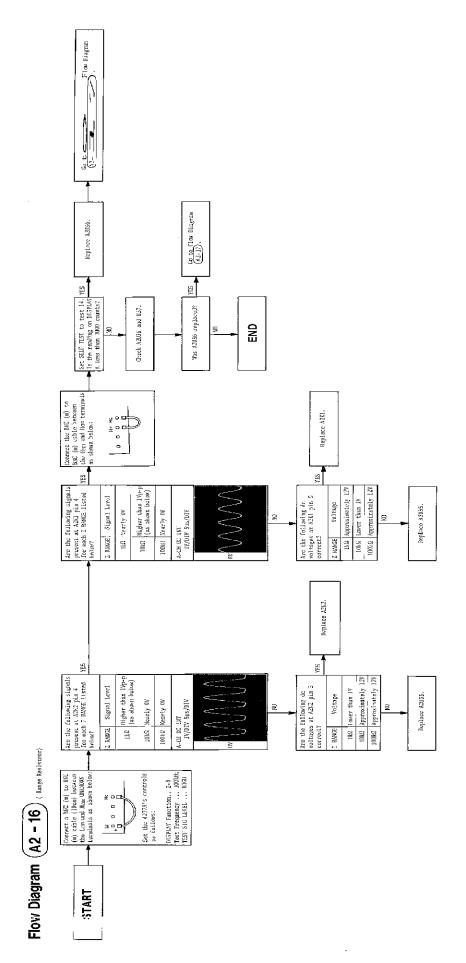
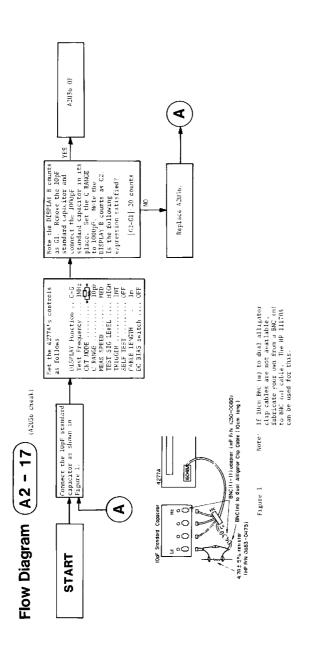



Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 14 of 15).



Figure 8-42. A2 ANALOG Board Troubleshooting Flow Diagram (Sheet 15 of 15).

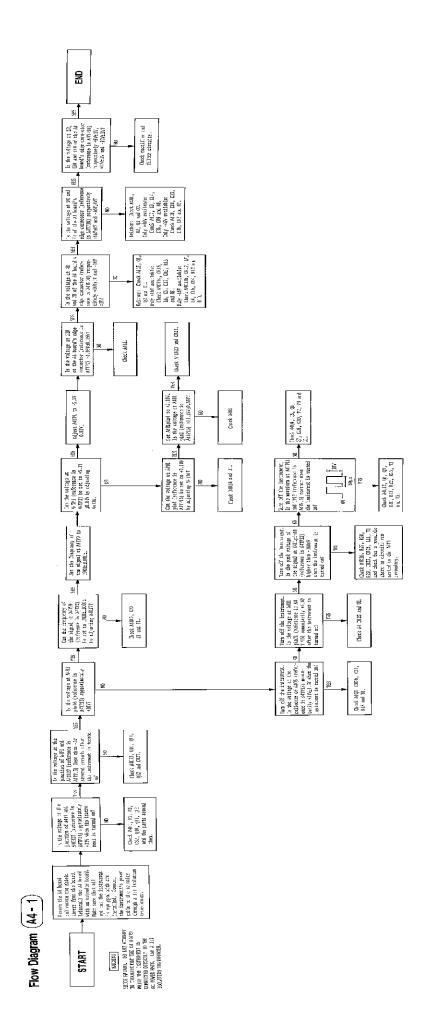


Figure 8-43. A4 POWER SUPPLY Board Troubleshooting Flow Diagram.

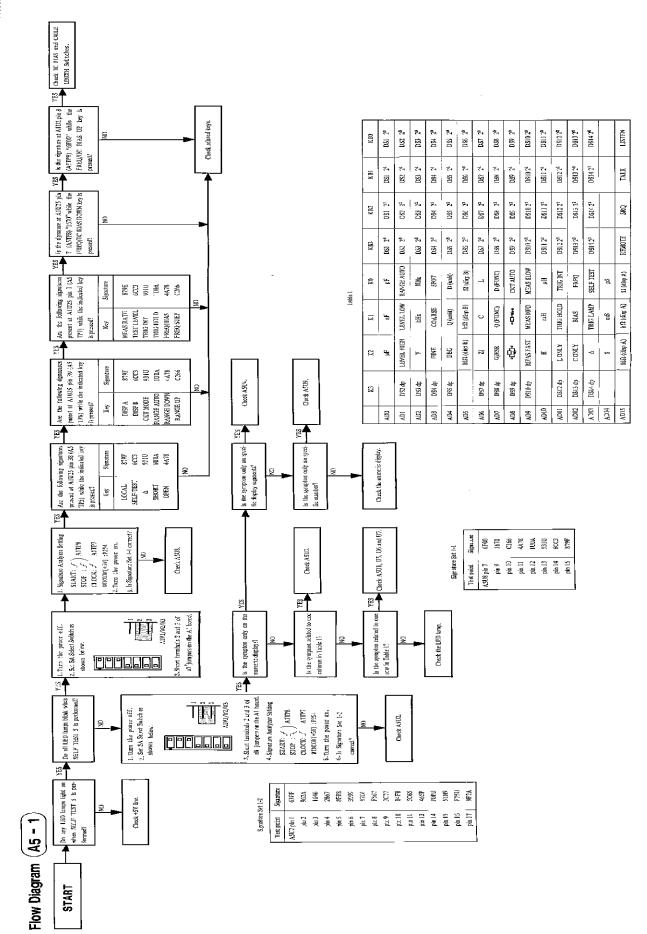


figure 6-44. A5 DISPLAY Board Troubleshooting Flow Diagram.

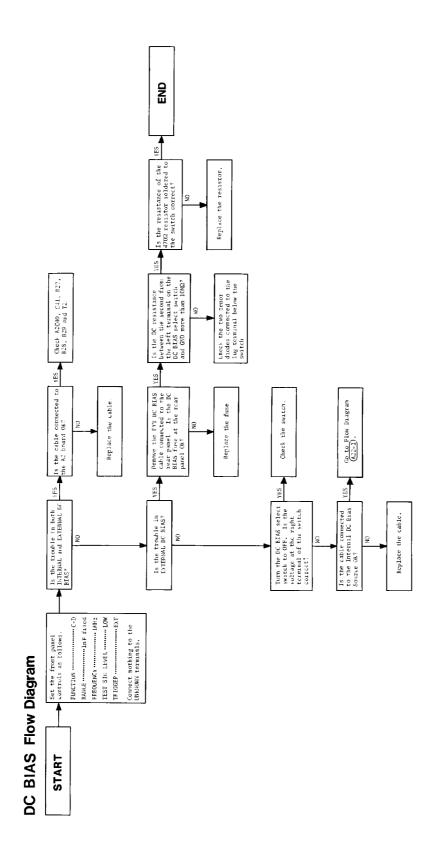


Figure 8-45. DC BIAS Troubleshooting Flow Diagram.

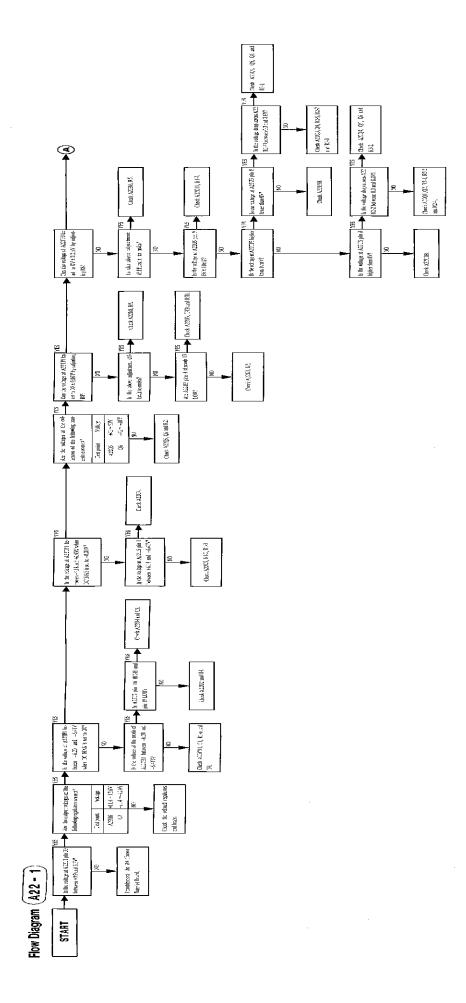


Figure 8-46. A22 OPTION 031 INTERNAL DC BIAS Board Proubleshooting Flow Diagram (Great 1 of 2).

SECTION VIII Model 4277A

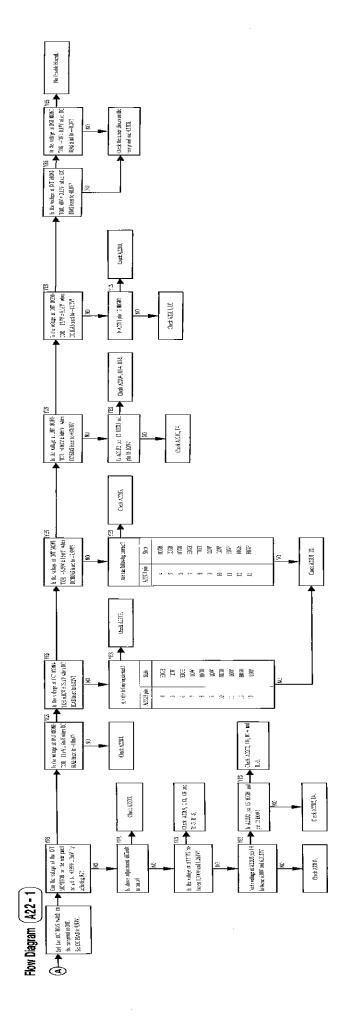


Figure 8-46. A22 OPTION DOI INTERNAT. DC BIAS Board Troubleshooting Flow Diagram (Sheet 2 of 2).

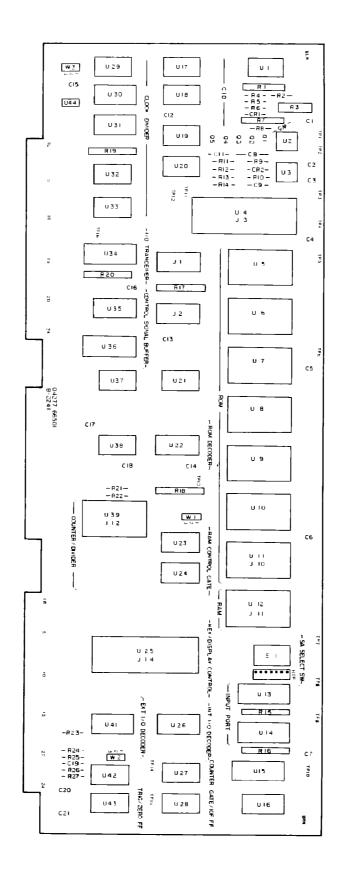
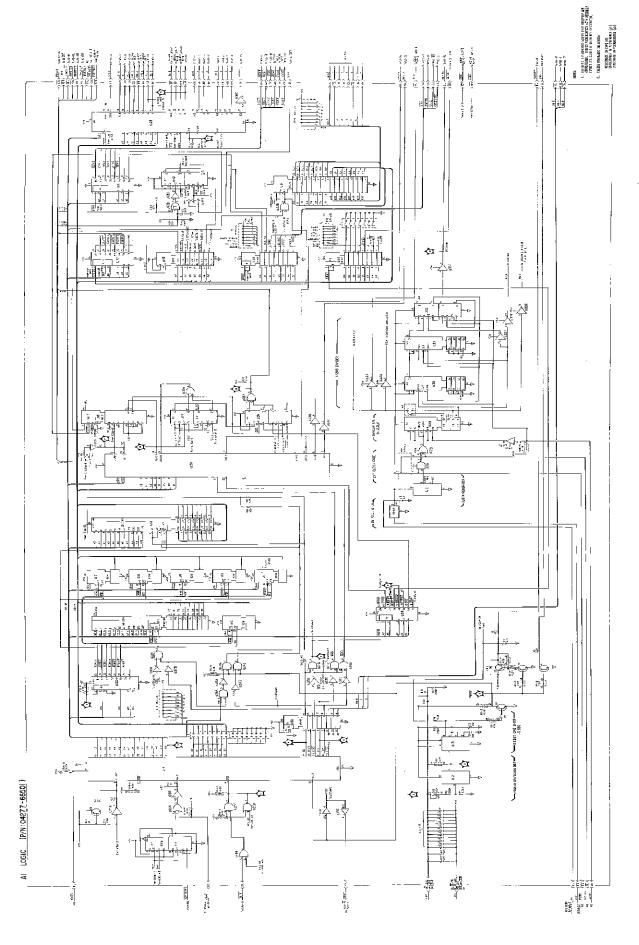



Figure 8-47. Al LOGIC Board Assembly Component Locations.

8-109

SECTION VIII Model 4277 A

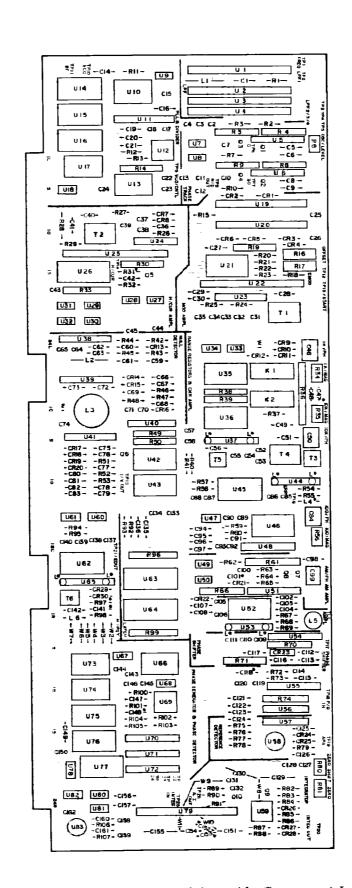


Figure 8-49. A2 ANALOG Board Assembly Component Locations.

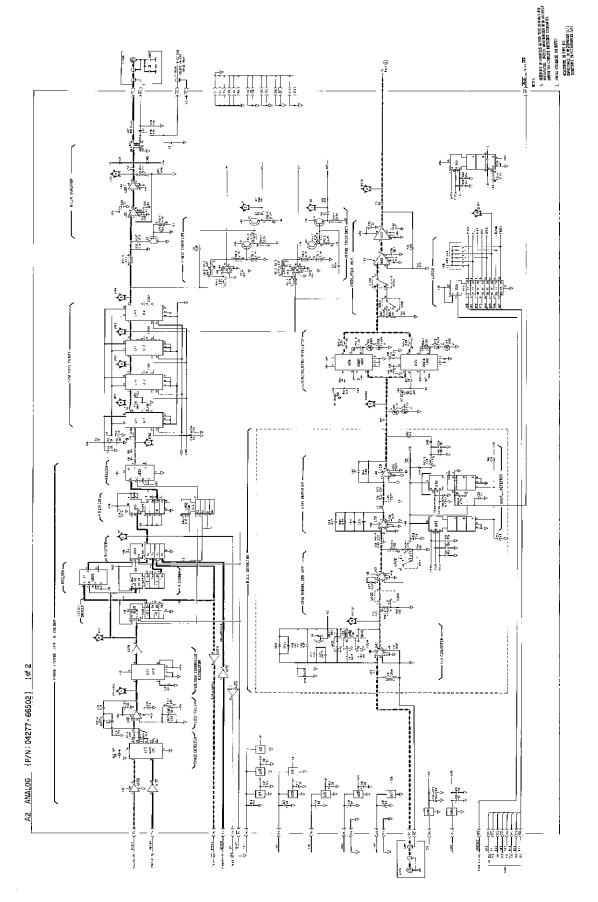


Figure 8-50. A2 ANALOG Board Assembly Schematic Diagram (Sheet 1 of 2).

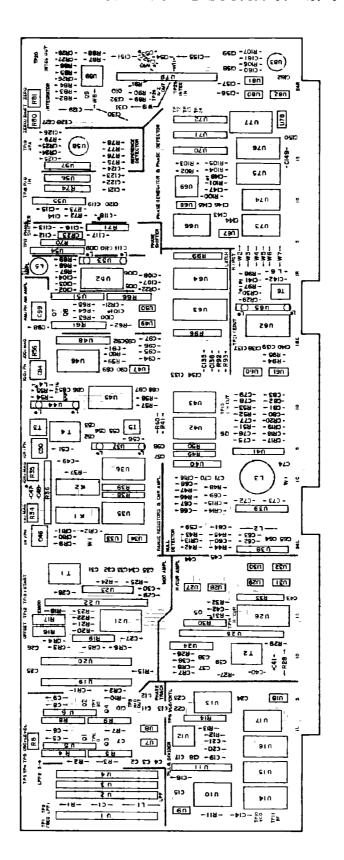


Figure 8-49. At ANALOG Board Assembly Component Locations.

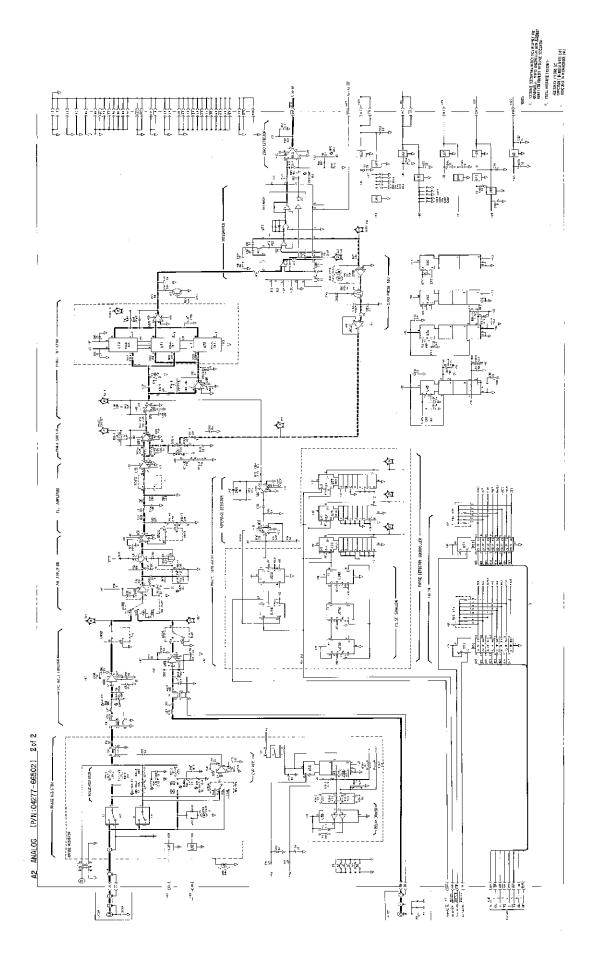


Figure 8-50. A2 ANALOG Board Assembly Schematic Diagram (Sheet 2 of 2).

SECTION VIII

SEE INSIDE

SECTION VIII Model 4277A

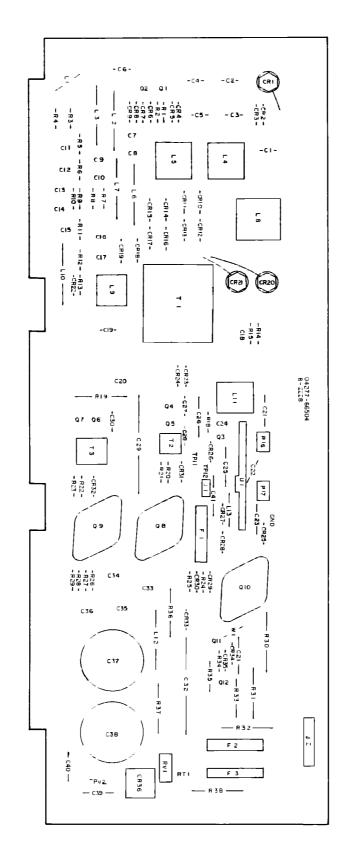


Figure 8-51. A4 POWER SUPPLY Board Assembly Component Locations.

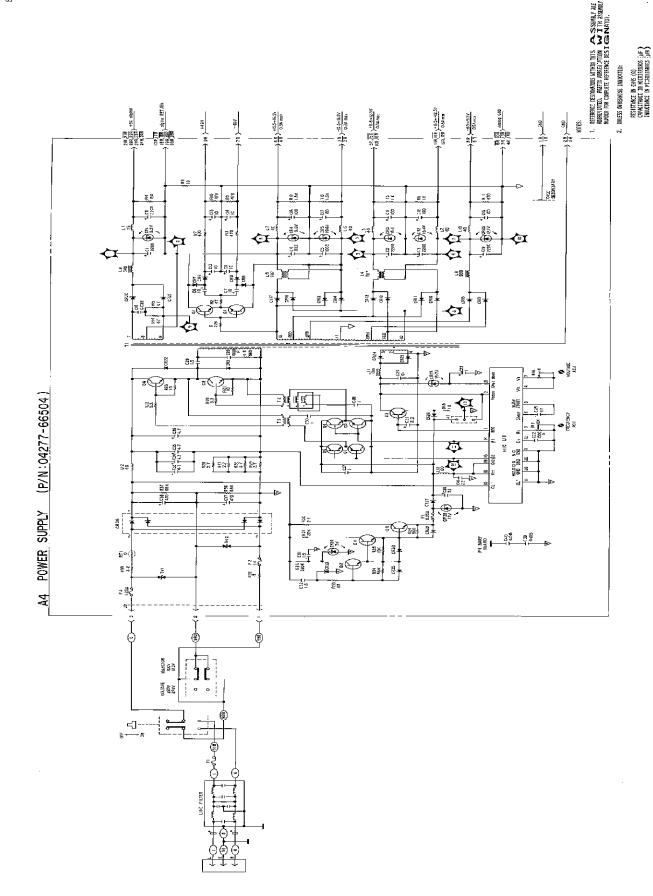


Figure 8-52. A4 POWER SUPPLY Board Assembly Schematic Diegram.

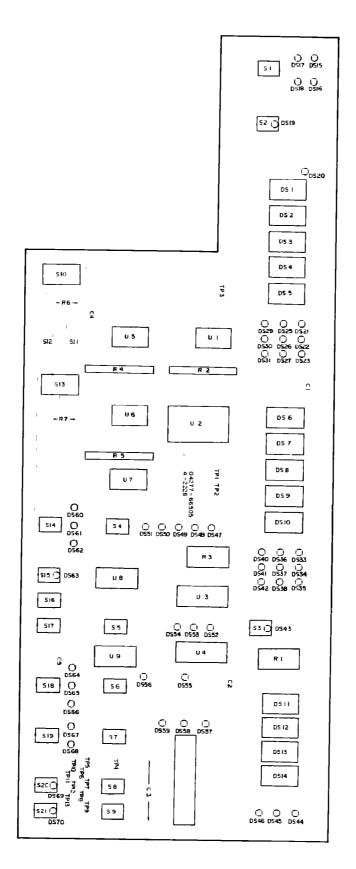
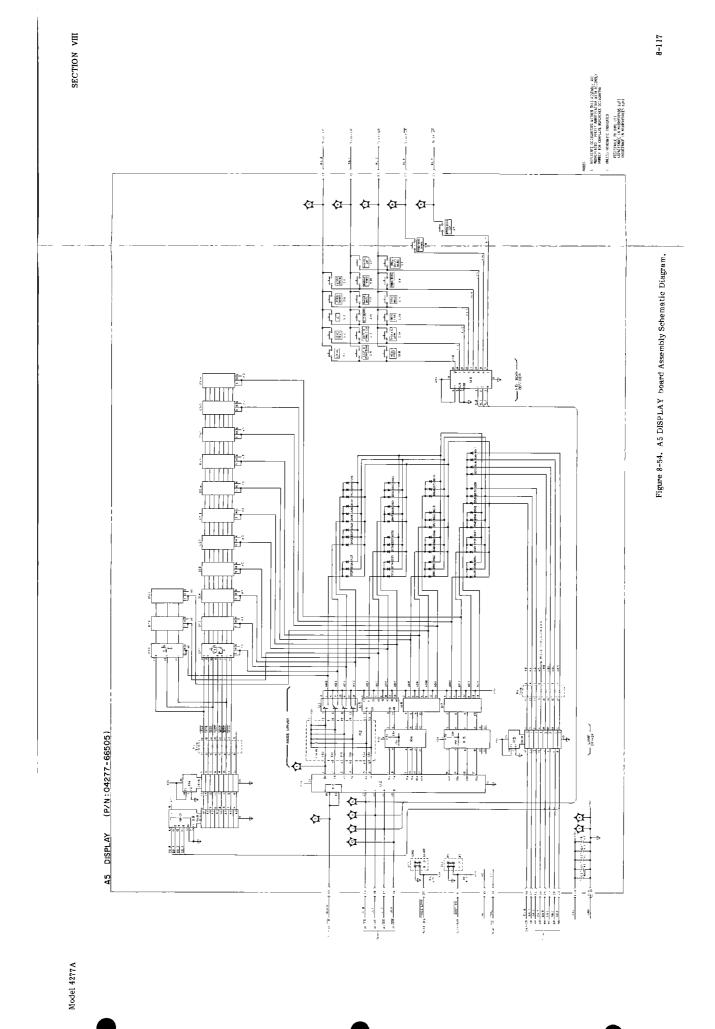



Figure 8-53. A5 DISPLAY Board Assembly Component Locations.

SECTION VIII Model 4277A

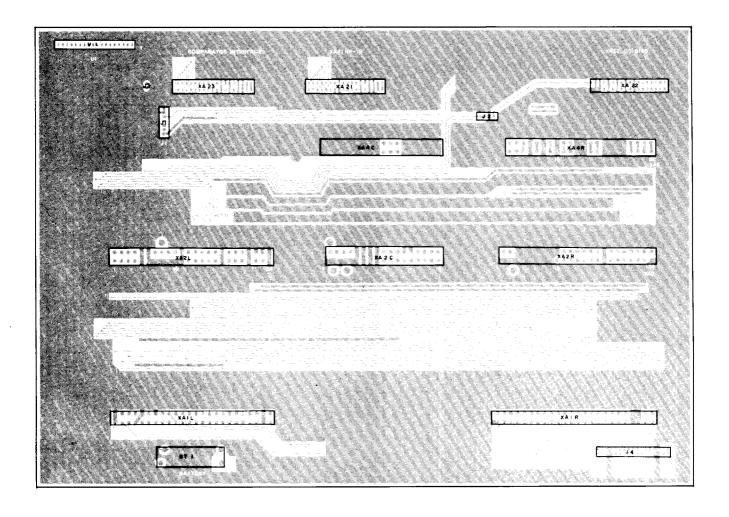


Figure 8-55. A6 MOTHER Board Assembly Component Locations.

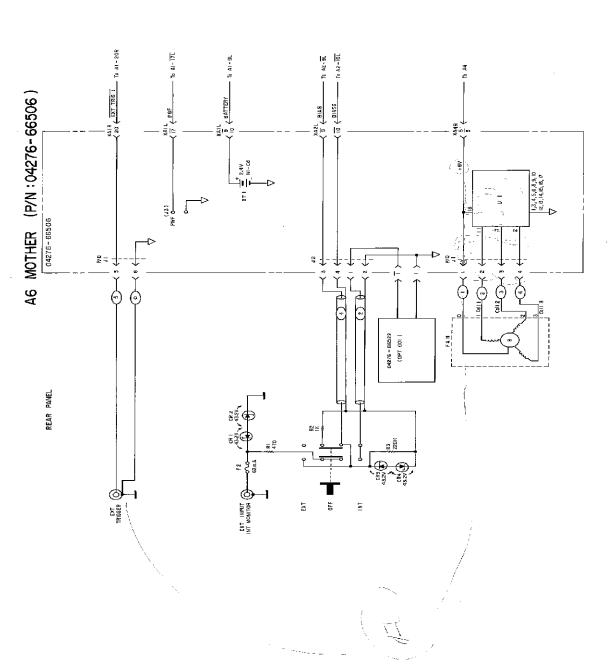


Figure 8-56. A6 MOTHER Board Assembly Schematic Diagnam.

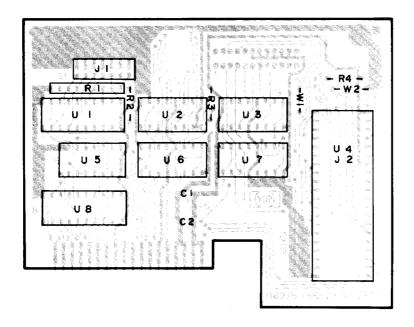


Figure 8-57. A21 HP-IB Board Assembly Component Locations.

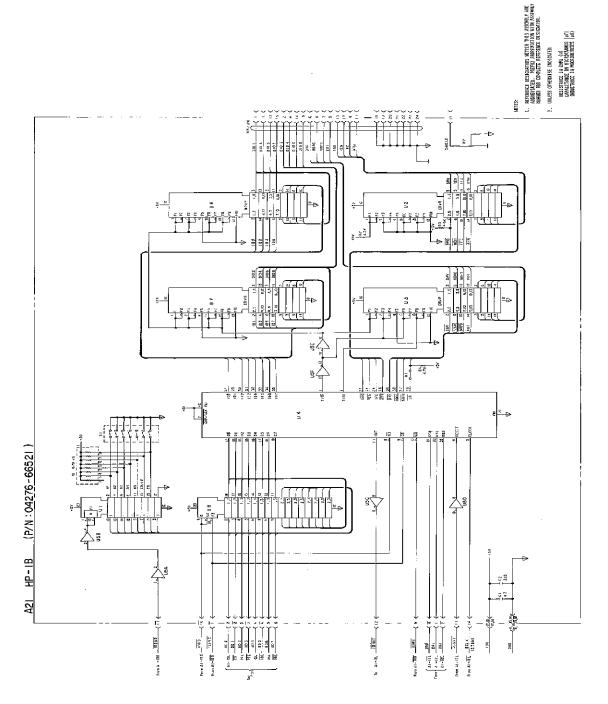


Figure 8-58. A21 HP-IB Board Assembly Schematic Diagram.

SECTION VIII

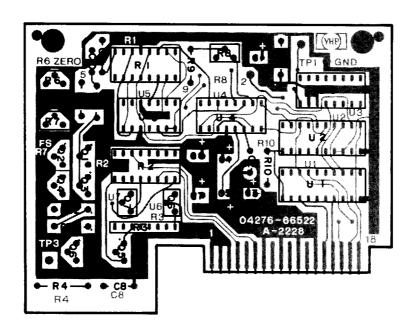


Figure 8-59. A22 OPTION 001 INTERNAL DC BIAS Board Assembly Component Locations.

Figure 8-50. A22 OPTION 001 INTERNAL DC BIAS Board Assembly Schematic Diagram.

SECTION VIII

SALES & SUPPORT OFFICES

Arranged alphabetically by country

1

Cash Remandicarbons Cash Remandicarbons Cash Le Collette Reday Autorità Citi 31-41 hongh 2 livet 1 hongh 4 liv

Bydory New South
Well South Street
Bydory Herital Ud
17-31 Law we Houd
17-31 Law we

Tales, JULYS
CE
Hewelst-Paukoul Ges m In It
Listing man 1
FO Birn TI
A
To I (mill Hosse)
To I (mill Hosse)
To I (mill Hosse)
To I (mill Hosse)
A C CLE M F
BAHFAIN
Cream Takes HEPA A
A C CLE M F
BAHFAIN
Cream Takes
To I (mill Hosse)
To I (mill Hosse)
To I (mill Hosse)
To I (mill Hosse)
P
P

Weel Pharmacy F O Box 648

Tel C 6101 Teles 8500 WALLBH

EAL BAHRAIN (Cont d)
Enyel Computer Equation
0.00 Chiefs Nutbershi Buuching
Generational Avenue
P O Bes Bill
MANAMA
Tel CPRITE
Teler 8015 plants bit

Their sitt plant to p

BELCIUM

BELCIUM

BELCIUM

Berein Fact and Beacher B.A. IA-II

Gord Sha Accessed IAO

Tectro IAO

Accessed IAO

Tectro IAO

F
BOLIVIA
Accellant Lists
4: 20 de Octobre F 125
Gaulla 198 t
LA PAZ
Tai 10004 I
H

Tel Statistics III BRAZIII BRA

CEP CHARLES BY SERVING BUTTONE 1941-019T TONE 1941-019T TONE 1940-1940-1950-1951

AHAMA DILELIS BHAA
AHAMA DILELI Lida
Riss Bage (ICI
BHICE SAD PARK DI
BHICE SAD PARK DI
Texas: 4720 HFBPA SH
A
Dalbinah Check onesa Lida
A Fassembu (48-C11
SAD PARK D SF
Tel (118) 20 (11)
CM

BRUNEI Famputer Witman 5dm 6td Recent 1 Did Feor Tumanok Plasta Infon Tumanok Plasta

MEADQUARTERS OFFICES
If there is no sales witter listed for your sizes contact rise of these
freedmarkers witters

Canberra Australia
Capital Territory
Office
Pedend Australia
Heriett Pedend Australia
Heriett Pedend Australia
Heriett Pedend Australia
Heriett Pedend

If there is a make other betted for your hospitagether at Membraghether in Membraghether in

EASTERN EUROPE
Hoseaft Product Gearn is is
Cobragate 1
F.O. Bart T.
A. 1202 VEXNA. Accreta
Tel (2007 1000-1)
Takes 1.0 LACS HEF4 A.

Take 13 MCH HEFA A
MORTMERN EUROPE
Hewish Packed 2 A
O Hospitan 34 I
P O Box 9/0
HL 1162 AG ARSTELYEEN
The Acthorisads
Tel 20 5417889
Teles 16 419 Ipper

SOUTH EAST EURIDPE
Hashell Pachard 3 4
World Timle Cente
101 Avenue Louis Castal
1X 9 Celetria GENEVA. Switz
Tic group NA Will
Tiche 373-9 lipser

NEOUTED HOME AND MEDITED AND M

Tet (11) 353-4500
BOUTHERN US A
Howlet-Pached Gu
2000 Realth Place
ATLANCA, 18-3 DECEMBER
Tel (404) 975-5301
WEARLY WEARLY US A
Howlet-Pached Gu
516 Lineterstrum Bi d
MONTH HOLL 197000 CA HICOL
Tet (316) 505-5420

OTHER INTERNATIONAL AREAS Havial Factorial Gui Intercentional Headquarters

CARRENT IN LEAVE IN LANGUAGE STATE OF THE CARRENT S

E.P. ASSESSED AND ASSESSED ASS

Me Leberatorin Rudriguez Corseant / R L. Misicines 1 (201 - 1016 Bernal Ceste BURSKIS AUES Tel: 121-121 / 62-4261

Argentina Econox 5 R.L. ArASEO 7178 THE SECOND AND STATES
THE SECOND SECO

AUSTRALIA

AUSTRALIA
Adelaida Bouth Australia
Offica
Howard-Penduri Australia
1 al Georgia Pendu
PARTSDE Y A NOCI
Ted 3711 3811
Teles XALBA
CLMEF

A CLUET BUTCH AND A CLUET BUTCH BUTC

CALCARY Alberta TCA 6TT Tot (40%) 254-31001 A C CM E M P Hewlett Packard (Canada) Ltd 11 CC-1156 Elmet EDMINTON, Nova E 147 1/1 2 Tot (40%) 400-1986 A T CM E M P

FILE OF P
British Columbia
Howlett Perhad (Caracia) Lid
1003 1 Shellming Way
REHEMO
British Commiss 664 Pelli
Tel 1004 (Th-2217
Teler (18) 117 2 5059
A C CHE 117
Howlet Shell Filer
Howlet Shell Filer
Howlet Shell Filer
Howlet Shell Filer

Manitoba Herdett Perbard (Cornela) Ud RE ini sise Bird WHRDPED, Manit ba R24 JR3 Tel (204) E8 4-27/7 A C CH EM P

New Bruns wick Howlett Parkerd (Geneda) Ltd 6 14 Mars Sheet MORCTISK New Bruntwek E1C 1EU Tel (505) 65-45841

C
Nova Socia
Heatel Farrori (Consta) Lid
State (1)
SUB Whether Road
CARTARATH Hera Socia (IIIB (FT
Total R) 44 P The
C FAR E M P

Ontario Heritat Fasterd (Canada) Ltd 33 5 H. Ser for Ital Unit (403 BARLINGTON, Cetario LTM ND3 Tel (410) 33 --(044 C M

C M Hewkett-Pockerd (Caracia) Ltd 486 Coys Road 83603TON Onlario P7M 5H4 Tel (811) 384–2088 C

Tel 18 1946-2019
Hevder Factorial (Landel) List
List (Landel) List
Lis

C
Hewlett Penhard (Conside) (1d
OTRO Methods Fash A in
WILLOWDALE Contacts MOH OHY
Tel (4-16) 438-25-10
C (

CI Quebboo Herinat Past and Carenda Ltd Herinat Past and Carenda Dighton Trikll Trans Carenda Dighton Trikll Trans Carenda Dighton Tell 1911 (1974-1972) Tells (1984-1972) A L CAR EM P.

A L CAR EM P.

Rewhite Postand Carenda Ltd Hill and Caren Fantzaro Carenda Dighton C

C Revietti Factuurd (Canada) Liid Elii Rol in Creek eni SARKATOON: Sasi-etchewan STL (MT Tel (306) 247-3702 C

THE DAME 24 AND COLOR CO

Oyenta (Chile) Lida.
An Rodrigh de Araya 104.1
Certai 1644Esta 1444Esta 1

Jud Port Termonia Pieza Justa Tistonia Pieza Justa Tistonia Pieza Justa Tistonia Pieza Justa Tistonia Pieza Judia Pieza Judia

BOUGTADE Tel: 314-4450 Tele: 4-466 SUMA CO

P Carmini S A Calle 19 North Ho 8A-49 Aparticle Pence 40 CAU Tel 1988-111 Teles S 550 C EF

Time 1 Std CCFF
COMOD
COMOD
STORY STATE ST

C PERUS
Televas IDF I
CARRO OFR
C PERUS
Televas IDF I
F O Ber 1951
Televas I
F O Ber

ECUADOR
CYCDE14a 11da
A-rrada Boy Aftere 1744
y Begua
Carda 9431 FCt
gurto
Tric 048-073 (44-482)
Trics 1544 CYCDE CO
EF

E.F.
Mediconics
Polisific Outro
Tel 2-19 (Outro)
Tel 2-19 (COLAME FO.A.

Hospitical & A Rother (CA Castle 1080 OUTD Tel 640 CSO 640-122 Teles 0405 HOGPTLED Caller HOGPTALAR-Could M

Entandor Oversens Agencique C.A.
Entandor Oversens Agencique C.A.
Edu Bi de Ortubre §8 18
F.O. Brus 1298. Georgespel
Institut
Teta 30mm;
Teta 30mm;
H. S. Sammin C. Sammin C. S. Sammin C. S. Sammin C. Sammin C. S. Sammin C. Sam

H EGYPT Sølom Enlerpises P O Sølom 289 ALEXARDRIA TE 80-1000 FABO FO (DELINE Tellom S-1333

Contentional Engineering Associates
Historia Hegati Street
Historia Hegati Street
Historia Historia
CARD
Tel 17019 11841
Tela: 91830 EA 11H
Cattle INTECASIO
E

E Stance Enterprises TO Mossachi Street Dobbi, Giza CARO Tel Yes 440 To1 087 Tele: 9 CIT

C SEC Medical 40 George Di Araji Street Mohandecan CARIO Tel: SIGNA ENSOR & 10263 Telia: 2000 SSC UM

Teles: SPAIN SEC. UNI
EL SALVADOR IN
FEE A NO EL SALVADOR
FEE A NO EL SALVADOR
SALVADOR
FEE A NO EL SALVADOR
FEE A NO EL SALVADOR
FEE AND EL SALVA

CCM F
FRANCE
FRANCE
FRANCE
LI Mercia B
Ris Berhalet
DTIG Les Miller Ceder
ACCSH-PROVINCE
Tel: 19-41-42
Tel: 19-41-42
ACEM
FRANCE
FRANCE
LI Red-Bert Tel: 19-41-42
CE
CE 19-41-42
CE 10-41-42
CE 10-41-

C. Hewlett-Pickerd From: Butment Letter: 2001 - route de Grame Breiste Autoriale DARIO ANTRES Tel (201) TA 88-19

C Heedert-Fachard France 20 flow do in Pépalicque Bothe Proximie sitch CSRLE BERANCON Teiro, 301 (197 C E Heedert Cardent I France u b Hereicht Fachaud Franze D Flace Hapriden (II 1912 III 84857 Tel (191) 41-17-341

Hendert-Pathord France
Dentrol des Misches
Heiter Petricks (EZ
HER STATE ETERNA TECHNICATION
HENDER STATE ETERN

| Hewler| Packerd France | ** a remain Represent Chance | Issue Effects (Greenship) | Tell | ** | Its | Its

Teles 82013-HP CREMON

(state | Peaced French
Has Hermand Formet
LA (regulation
rottl) goodback
Tall (mb, 4-HT so)
Hawleth Facility of Finance
Lanc Club des | a micries
Lance Club des | a micries
Lance
Harman
Har

Takes (2014)

LE M. P.

Lowel of Market Filter

Lowel of Market Filter

Rose is the Control of Market

Rose is the Control of Parts

Rose is the Control of Parts

Rose is the Control

Rose is the Co

C E Howinty-Peckard France Marquero (1987) Chemin de Mesia Chème 18240 METLAN (Grenoble) 161 [18] 80-18-40 C

Let [18] 20-10-40

Hesselett Fauhrerd France
Lat A FE sich Be Bis Briand
4001a MARTER Cooke
Let (40) 40-32 22

Febru 7 100-21

KC Luck Be Station (40) 40-42

Execute Beschild France
Let (40) 40-32 22

Execute Beschild France
Let (40) 40-42

Execute Beschild France
Let (40) 40-42

Execute Beschild France
Let (40) 40-42

Execute Beschild France

Execute Beschild France

Execute Beschild France

Execute Beschild France

Tel 189 2-30-31.

EP
Posset in trace in some income the Controlland.
Annexe due Troppess
Beyon Called Controlland.
Annexe due Troppess
Beyon Called Controlland.
Annexe Called Controlland.
Annexe Called Controlland.
Beyon Controlla

C P
Herelott-Peckerd France
124 Boulevard Tourasse
64900 PAU
161 (19) 61-38 4C
161c. 59 (50) 1
C E

C E
Heelett-Packard France
6 Pinns Surain Grins
escan Portreis
ful (48) 41-01-01
fulca 78-108 F
C E

FRANCE (Cont d) Hestell Fisched France 17 No. de Chall-reale 1 I ION RESIDE 1 d (76) LS-49-79 C F

I to I to 1 June 2-14

Feel of the third in the principle for the control of the

Tokes TRITICAL

If I there I is more
I the I there I is more
I is the I is the I is more
I is the I is the I is more
I is the I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is the I is
I is the I is the I is
I is the I is the I is
I is the I is the I is the I

I. Hewlett Pauland France V Rus Banden 19000 VALENCE Tel (TE) 41-76-18

C: — Hewlett Fackard Franco Lambo LAC de Bote Bright 17641 9107 (Hebb) Tel: (8) 771.29 12

GABON
Bin Cabon
FO Bon R9
LOSSPALE
Tot 721 401
Teles: 32.00
GERMAN FEDERAL
REPUBLIC
Newholt Packs of Grabi
Newholt

A COMMITTAL CONTROL CONTROL

TO THE CONTROL CONTROL CONTROL

TO THE CONTROL CONTROL

TO THE CONTROL CONTROL

TO THE CONTROL

T

Sent Carbon Medical Control Sent Control Sen

Herri Company
Ministratopa elesa
A Nesses 1
10 7-100 Till
Tales 218 67
All
Herrico
P O Born 67428
Testo 24144
A

A GUATEMALA
GUATEMALA
FERRA
Avenido Beterma 3-48 Zuna 0
GUATEMALA CITY
TAG SIRECT TO INECT MATI/5
Teks: 30% TES (PEDA QI)
A C DM EM P

CM
Schmidt & Go (Hong Rong) Lid
Iffith Huar Creal Expe Centre
21 Harbur Roud Warehol
BerNo Kohly
Tel S-RELUCIO
Telen 74 Th D Hill Ha
A M

Tribus "4" to 2 Hit HI
AN
NECELATOR
HERBERT FACION INCLINE
HERBERT FACION
H

Box Star LM
off of Leek Read
MARCALETS Read
MARCALETS ROOT
THE START ATTIO
THE

Gane St to 1.10
To 1.47 (1908 Bermann Rei
SEPLANETRAMO CON 102
Tel 17037 77058
Term 1155-540
Cather Study Teles
Ham St 1.54
Teles 1155-54
Ham St 1.41
Tel 7.74
Ham Study Teles
Ham St 1.41
Tel 7.74
Ham Study Teles
Teles 1155-54
Teles 1155-54
Teles 1155
Cabe (10.112174)
Cabe (10.112174)

E
Gumpaller Hamilenenen Corporation
List
List Serolat Deel Road
Seriamorenassa (no 1902)
Tel 1 (1)-114 (1) 4 -774
Teles (1) 1 2800
C

C INDONESIA BERCA Indonesia FT FD Be 450.01 II Abdul Med 61 JAKATTA TT JETJUNG Tele-46748 BERCAI IA Cable HERCAI, IANA RTA P

Cable INTEXAL MARKET

BUCK A SIZEMENT

A MARKET MARKET

A MARKET MARKET

A MARKET MARKET

A MARKET MARKET

TABLE AND MARKET

BUCK A M

Times 214-440 MEPA INACIDIC INFELANDI INCOME PARA ANT INSIGNATION OF STATE OF STATE

Table 12554

IBRAEL

IBRAEL

O Bis 170

O Bi

CIM
Hereboth Pershand Indiana (1 p. A.
Halleman, Allic
I-48011 BOLDGMA Arcola Dict Emula
Tell (05) 173 (05)
Tellin 3 | 1610
CID 14

C C I A Hawlet Packerd Ralling 2 p A Fix Primpe Napis 4 (G C 48) 128 CATMIA Tet (DR) 2T 18-8T Text (DR) 2T 18-8T

New York Hawler Harland IP A was D II Hawler Pelanto Tellanto Tell

Hewelet Past of Inches 5 p.A.

1-20 SEC CHANGES BILL

AND CHANGES Inkogowa Hokusten Electric Corporation Sten utiu-HS E.dg 106 E-I H.zmi-Stenjub u I-Chome Shinjuku-Hu 108/10 183 Iel (00) 144-1958 Ipien 137/384

I relegione Heleucho Bectric Co II-32 Nokustro 3 Chome I Chome Macation-reli Tokyd (III Teles 100/02-401 TEW MTH I A tribings-se-Newlett Packard Ltd Meigl-Seimel (Itzanemiya Dadori Buduling N-3 Cholori 7 Chome (ITSUNCRETA Turking 3-21) Total (ICCS) 33-1 (ICC) 4 (IC

Tel: PICCA 33-1 (E2)

Tel: E

Telegraph-Hewlett Pleabard Lid

Telegraph Hewlett Pleabard Lid

Telegraph Hewlett Pleabard Lid

Tel: HAST 10 L 120

C M E

Tel: HAST 10 L 120

Tel: HAST 10

I GEO THE TABLE OF THE TABLE OF

A Longharq Hearthcare Frontiers (in 14d Hube 201 Medical Tumphy Ce Bidg 1-31 Despungation from Resp. 260M Tel Til4-1171 T41 I641 Telas Ica Til4-1171 T41 I640 (abbs T) BEEL #10

E S.LT.L.
Immeubes "Le General"
4- thi General de Couse
of OF 161
ADQUAN 01
Tel 321 127
C.F.

C P PAPAN 104 oppro-Headert Packer I Ltd 160 1, Oraca artificia (component de 1 Tel (0440) 2 (-800) I C C M E

Tei (in 3, 12 - 14 N)
CE
Tei CE
Tei Cestanti Fastkard Ltd
kumagana Asahi KE Bdig
3-4 Takatata
FEMAGATA Ladiama 1880
Tei (in 801) (3-4 Hill)
CECHE
Tei Cestanti Cestanti
Tei (in 801) (3-4 Hill)
Tei Cestanti
Tei (in 80-1) (3-7 Til
CE
Tei Cestanti
Tei Cest

C E 124 agrees-Newlett Paulischi Ltd Ethis fryste Center Bidg. And Higherth Ethis beginne Deutschie Deutschie Deutschie Deutschie Beitzel bei Beitzel Beitzel Steinwag auch Erytäro soon Tell (175-143-250).]

C E
TH opp-vs-Hendett Fucker) Ltd
Him Metad Bildy
4-11 Sunns-mann in Liborna
MTO I ibu alsi 0 10
Tel (CUIC) C =-7470
C C M E

COME

JAPAN (Conf. d)

To agree-Newlett-Packers Life
Mou-Sermer Insheben Bedg

14 Resident Totama. Bendd
errake, Inta

Tel (PCL 127-1011)
CE

This agree-Newlett-Paulini Life
Diedat-Bidg

1 10 Confact Life
Life
Life (PCL 127-1011)
Life (PCL 127-10

The control of the co

CE Takupasa-Heraketi Packari Ltd Oscráti Serred Bálgi. T. I. Hald Shinjia ili 3 Chame Bhilgian ili 4 Chamballi ili 4 Takupasa Heraketi Ltd 1 Takupasa-thu Haraketi ili 4 T

C E. retorpress-Hewlett-Parakent Ltd. 35- 11 Tekshin-Hippahi 3 Chome Su jurani-ku TOKTO 1811 Tek julij 201-4111 Teks. 312 20124 THRTOR C CM E.P.

Photo & Che Equation
(*O. Box 170
BAFA!*
Tel *445.111
Toke: 2214T MATIH I/T
Cates MATIH RUWAIT
#

P W.J. | Invest Computer State P.O. (floor 4597 SAFAT Tel: 1480540 | Tele: 18808 TOWELL RT

LEBANON
LEBANON
LEGRIPATE INformation 5; Thurmone Bulleting
Phumman Bulleting
PO Bees 11-16-74 Open
EXEMPT
THE FAR 40 THE FAR 40 THE
LEBERIA
Unitionalisate Nat.
10 I Item 45001
SOUCHVIA
THE 724-7252
Treat 45/75
F

MADAGASCAR

THE LIBERT THE STATE OF THE STA

A E H
MALTA
Phop Yourds Ltd
Undature F O Bro 11
Hetalian Rd
Manualia
Tel 4474 454 684 494 188
Teles Media MH UN
I N P

MEXICO Herelett Fackand de Merlim FA (de C.# Rim Him HI49 Deep 12 Frans, Cordoba BLASTE RIAREZ Tek (81-3-16-62

E-Howhold Fastism die Messess I.A. die C. il Construintis Fader mits Umable die Messes No. 1885 Deep & CO. DEL PADET TROUG Om Let 483-6-102 / 1

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Hearleth Paul and the Manthin S.A. de C.d. Month Manthins Not (2011) Franchmuniketto Lumia Bardia 48060 008ANAARAA. Juliums Turi (26.4 14.400) Turius (6884 188 ECOME

Macrosumputzeleres Newton-Peshard mil Patronu: 115i ⊐LOMASL Mosdon: DF IS20-#1017

F
Hewelt Packerd de Hash.a

I.A. de C V
Crist del Hale
APT On; 4m Pim
Cusma del Vacil
Menkely de Gursa (Sacia Hayen) son com SONTERCTY Nerve Leon
Tel 18-TH-64
Tenn 1814 III HIMY
C

Technical Private
Information 7, Determine del Morecia
B A
Rui Oriente
Desparte 2011
Comme Del Vide
BENTERREY
Technical B Informati
Technical B Informati
A E
Hemetit Fast and de Mexico

A E Hawkerd Fackerd de Hawker S A de C = 1 Bird hadependenda No Milli Che Gui Estrecht Testerone COAH Tel (7)-(8-2)-(89)

Time 17 Thy
Berna-Marie
Berna-Marie
Ganal Lapable
CASALLAN
A
A not Lapable
CASALLAN
A
A not Lapable
CASALLAN
A
A not Lapable
CASALLAN
A
CASALLAN
A
A not Lapable
Casallan
A
A not Lapable
Casallan
A
A not Lapable
Casallan
A
CASALLAN
A
CASALLAN
CASALLAN
A

C E

Howkott-Putharni Hesistered B V
Putharn Petersetreed 134-138
HI 164 I I LV ENCHHOVEN
F LI Best 2347
Best 1647
F LI HEST 247
Test (1448) 1976 I I
Test (

CEF NEW ZEALAND NEW ZEALAND

1 News Read

9 Days Seld

1 News Read

PO Bas Seld

Extra Address

Cabe HENTAL

Cabe HENTAL

Auchins

C CALEF

Hewlett Pealand (H.Z.) Lin

1A-100 W.T.Z. Invent

PO Bins H43

Courieses Plans Will Expent

C CALEF

Cable HEPFAT* Vegalogion

C CALEF

Marting Martin Couries

C CALEF

Hermony Reas WELLDATON3

Tel 87-1001

C CALEF

Kertheny Reas Seld

C CALEF

Kertheny Resistances A.S. pricess

... otensi
A. M.
Hurthway butramenia A.S. phiena Ltd.
(10) Marcher S.S.
COSSTTOMENER
Tel 45-451
Telsa Ltgs
A.M.
Norther

A Minop Instrument I & Systems Lid Bladder House &--Fi Charmes (Inset P O Bom 3400 BFLD 1870 B Tute 1894 B Tests MI 3400 A M

A M
NIGERIA
NIGERIA
Emerm Agenta I til
46 Calculti a Cristossi Apuga
F O Ben 1744and
LAGOS

Again
Ber United Ningdom
MORNA Y

MORNA Y
MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA Y

MORNA

MINICATION, FAMATO OF CHAIN TO THE ROLL TOWN SHIS ERCHER MO HUSCAT

Bullet & Bear Belivers
P O Best 163
MUBICATION TENTE OF DRAN
Tel 734 201 1
Text 2014 BAHWAH MB
E

A E F
PANAMA
Bendrown Button, R 4,
Callo Semuel Levia El) Alla
Apartindi 40 %
PANAMA 7
Tal 64 1700
Team JARO ELECTRON PG
LM EM P
OCENII

Tool SMO ELECTRIN PG
LEE EMP
PERU

CO Series Melos 3 A
Co Series Melos Melos Melos Melos
Combination Melos
Combination Melos
Co Melos Melos
Co Melos Melos
Co Melos
Co

Telen: 18014
CP
PUERT OR ICO
Hewlett Fachard Parent
R0 I Manus Rivers AEas Cum Other
HATE RF Plenta Rout Blatt
A CO AN
A CO AN EF
QATAR
Computer Acids
DO BOS STAID
DO BOS STAID
DO BOS STAID
DO BOS STAID
THE ACIDS
T

r Neuser Freding & Contracting F O Box 1563 nove

DOMA Tel 4251TII Teles 4439 HAZMER DH

N SAUDI ARABIA
Mattern Bactorius Establichment
Forbit Paller Diretten
FO Bit
Tonelia III
Tonelia III
Tel Bit 1784 dish 1784
Tel Bit 1784 dish 1784
Tell Bit 1784

Gails LLETA 4L-HOBBA
ELM
SAUDI ARABIA ("Cont d)
Modern Devrinous Establishment
Fr 0 Brt 125 Design
Fr 10 Brt 125 D

P
SCOTLAND
Bee United Fingelom
SENEGAL
Sanded Namen April & Car
7E A-trans Great per Primpeldias
B | 301.
B | 301.
Calaba
Tel 3.2218
Calaba 47AD-Dakaz
E

Calife 474-Dotable

E. Allingue Distribution A.

Bernard B. Bernar

Dynamics in employed I toll Unit 15-11 Block 0
I mare A set industrial Estate SEC APPRES 1254
Tell 474-185
Tell 56:00 US
CM

Hewlett Penkind So Africa (Pty) Lid 6 Linton Armalia 5 H Cape Num Uniter Grange POTF ELECASTH (400) Tel 04 H 10 Lid Tesu 124-29 18 C

E-Hewlett Peachard Can Africa (Phy | Lid Finistican Center (cultures Str Management Fast C.L.): PSZTORA (1983 Tel (1973) 444 (725) Telen (2) 163 C.E. Hewlett-Papel and Can Africa (Phy) Lid Reserved.

Tel (1974 A 17%)
Teles (1974)
Class (1974)
C

Howelett - makerd Experience, III A Souther La Coat cross A ACRI I-I VALENTIA TOT (MR) ISI 10 A4 Team (LAUS) Experience Laurence Howelett (merkenet Employment)

The control of the co

Term (PAN) I (CERT PA) Sprange office)

Health Plan Land (Line)

Health

I part years.

SWITZERLAND
Hew-left Plack and (Identity) AG
Chromitemen in
Characterism in
Characterism in
The (In) in January
An CEP
However Verband (Fidentity)
The data (Backet)
The (In) in January
The data (Backet)
The I may displaced (Identity)
The I may displaced (Identity)
The I may The I may The I

New ACCIONAL PARTIES AND ACCIO

AUTHED ARAB
EMMATER
INTEL DI
INTEL
INTE E. Muchine East Decironous F. C. Beat (1985). About Rumasorth DAMASCAIS. Tell 183 41 802. Total 18 41 817 1.

Howeld Paul and United Drives
I shall be used Out fixed Out fixed
I shall be used Out fixed Out fixed Out fixed
I shall be used Out fixed TAIWAN Hersicht Perkend Taiwen Uid THA Office 2 Haum Nun Roed CHUNG LL Teopiest Tel (0014) 129-680

CF Head total
CF HEAD
CF

CF Medical IIII

PORT CONTROL OF THE CONTROL OF THE

A CEM P

NOR THERM IRELAND
Howelf Perkert (Irecard) Ind
Carrictorys industrial Centre
Ty Bellial Head Centrefreys
ED ANTEN BIDA 8994
THE UNION SEPA
THE UNIO

SCOFLAND Header Fester Ltd 17 Surveylus Plean Catings Millan Harth EAST KLIFTON 174 HU Fel MILES-49261 Tokas TT-842 CE

CE
Healett Packart) Lid
GRATH GREENERT
West (off at EMO ATG
Tel-1913 CH (198
Tries Total)
COM EM P
UNITED STATES

Alaska Historii Pizzierii Co 38011 El Salle 1416 ANCHINACE Al 189-03 Tel 1907|1403-6889 E E

Levi-41 (UB-4-88)

C Herefell Fachard Tateur Ltd
Hasteroury (Office
11 F 4-86 Chung Hoon (at Road
KAOHSANO
TH (UT 32 41 pt 18
C E

THE MILESTERS AND THE SECOND S

A THAILAND
Defining Co Tild
ID Extremy A - Surfacing
RANCE OR 10500
Tal 1184 UT 114-1081 I II
Tems 644 IF Simures Til
Cable URIMEEA Burgerië
A C E M

Hunglink thattens Epulpment Lid ASH Delp Road BANKSON Tel: 34-8871 294-8871 Telm: 87638-8EQUET TH Lable: 8030QUET Bangbok

TOGO
Viscotte Africade
(IF 1000T)
LINGS
Tel 11-62-68
Tens 8384

Trans CDM |
TRINIDAD A TOBAGO
CANADAM TERRAPIN MI
LASTEN BAIR PARA LASTENIA
LASTEN BAIR PARA LASTENIA
LASTEN BAIR PARA LASTENIA
LASTEN BAIR PARA LASTENIA
LA

Labor FRMALO

FUNDESI

FURKEY
LM A
Hedita Elden Sokak Hii 41 ft
femilita
AUXAN
fel JUDITS
fem CTULITY TR
Cobbs EMATRADE AND ARA
M

I P
Dest inc.
Learntope Gazateuler filled
Fundin Kulern
Sekah U I Clayretiape
STTAKERA.
Left 172/1328 173/1344
Lean 42480
A

Cable DANTHOE APP ARA

Telvim Circuss, 110

Telvim

A Altzania
Mendel Rachinol Gri
Mendel Rachinol Gri
Mittill Rachinol Gri
Mittill Rachinol Mendel
Mittill Rachinol Mendel
Mittill Rachinol
A C.D.R. E.M.P.
Mendel Plack of Cri
3400 Lact Horizonia Liv
Mittill Rachinol
Tel (100) 73-1-000
C.E.M.
C.all Rachinol
Tel (100) 73-1-000
C.E.M.
C.

Tel (Hill) 2005; 200 Hellett Faster Ca. Hellett Li Ollinot Herman Sullis IIII. Tel (1001) 53 B-LZ. Tel (1001) 53 B-LZ. Herman Faster Co. 1011 A Moralman A-FILLATOR C. 4 TOLLIN A-TEL (1014) 484-484. TEL (1014)

UNITED STATES (Cont.d) Howlett-Packert Co. 2 435 Grand America EMRC BEACH, CA 90(1) Tel: (EE) 444-1131 C.

Tel: (EUR) 445-1131

Chemical Packard Co.
Bidl: 1 Water Mann-harter A. v.
LIS AMCEDER: C.A. DEMA
Tel: (20) 117-8-800
Trains 810-325-8002
C.M.
Hemical-Packard Co.
2165-Paris Orbite
PALIO ALTO: C.A. MAGDO
T.E. (20) 117-7-8000
C.E.
Brandeth, Packard Co.
Brandeth, Pac

CE
Hewlift Perband Co.
414-88 Method Coner, Eurie A
ALCAMARTION C. B BBA
Tob (Billiona) Co.
Tob (Billiona) Co.
Tob (Billiona) Co.
BBBA CELON CO.
BBBA CELON

C
Hawlett Facilish Gi
3003 Scott Boscorce G
SANTA CLARA, CA 0-554
Tel (400) RN1-7000
Texts 910-338-0501
A C CM E

C CAN E
Colorado
Howith Funkard Co.
Howith Funkard Co.
Howith Funkard Co.
Funkard Colorado
Funkard Colorado
Funkard Colorado
Funkard Funkard Co.
Howithon Funkard Co.
Howithon Funkard Co.
Howithon Funkard Co.
Howithon Funkard Co.
Funkard Funka

Massochusetts
Herstell Larkert Lo
177 Mantenen Rod
ABOVET MA Billio
Tel (8 17 820 1900)
AC GM LM IT
Howard Fest and Co.
32 Herstell Avenue
LEMBATISM AR 12 173
Tel (8 17) BB1 42 800
CE

CE
Michigan
Howert-Patkurd Ca
HUR (Lecture Read 3 E
GRAND RAPES, 14 489 int
Tel: (RIV) RET (RIV)
Herbert Plack and Ca
388-41 Ochard NCJ Places Orive
NOVI, NI, 1920-11
AC EM
Howert Plackard CA
Howert Plackard CA
HUR (RIV)
HUR (

Howlett-Parkers Co 1771 H: Big Bes or Road TRO1 MI 45014 Tel (3 (3) 643-647 I

Minneacta Howlett Packerd Co 1925 W Largenton A-a. ET PAIL. NH #112 Tek (B12) 844-1108 A.C CM E41

ACCMEAN
Missouri Co
Hosiett Paulard Co
1001 E. 1012 Ferrors (Arcs 130
RACASA STY MO 641113026
Tel (1018) P41 3411
ACCMI.M
Hewist Paula 10
10111 Horisten (Drie
1012047781, MO 5304
ACEMI.M
Mellonania

A L E M Nobracka Howint Posturd 19831 HAdrata St DESHA HE 88154 Tet (492) 493-0300 C E H

C.E.H.
Naw Jorsey
Hewath-Paul and Ca
120 W. Cartury Read
PAMARIES N. 10 TE 12
Tel: (20 1) 255-5000
A.C. C.M.L.M.
Hewird IT Baland La
20 Hew Engand A. West
PECATURAN H. 10 2555Tel: (20 1) 667-40 Hz
A.C. C.M. 10 Hz
A.C. C.

C E
Now York
Howlant Heckland Cu
8 Groupster brine South
ALBANY HY 1220+
AC E M
HOWLAND HARD
AC E M
HOWLAND HARD
THE HOWLAND
THE HORST
THE FOR HARD
THE FOR HARD
THE HOWLAND
THE HOWLAND
THE HARD
THE HOWLAND
THE HARD
THE

Ter (12) (11) 10 ACM

Hewlett Float and Ca

Shi Myers Camer Bit

Hids Section File* Soils 20

Hids Section File* Soils 20

Ter (14) 100-14 15

Ter

North Carolina
Headt-Parkerd Co
BIG Overpoin Dr
CARY HEGITA(T)
Tel prijg 46T-8650
CO4 E.M.F.
Hewlett Perkerd Co
BESCH HEMISTON Fire Bred
CHARROTTE, HC 0.8210
CC (T04) 5.27-8750
CC

C Heelett Paskerd Ca 580 Resorte Haj CSTERBORTO HC (1940) Tel (10) 452 1800 A C CH LH J

A C CH L.M.I
Ohio
This Addition for the 1771 B Addition Read ARROW. In A Addition Read ARROW. In A ACTO
Tel: (216) 644-2370
E.B. Herelett I fact and Cot 4301 Entire Read
GRUEDBART DOHA 4,542
Tel: (510) 894-8970
C.M. Herelett I Plack and Cot 4400

A C CM EM

Connecticut

Hewlett Facher Ce

and Ryban Av

Emparament CT resion

Tel (20) 337-64-8

Hewlett Facher Ge

Hewlett Facher Ge

47 Burns Industrid Road Smith

WALESPECT OF 6482

Tel (20) 225-4701

A C CM EM

Florida

Flo

Fleefold .

Wheeler Fleefold Carlo Hard Marcel .

200 H H M. Christ Minnel .

200 H H M. Christ Minnel .

200 H H M. Christ Minnel .

EL M. P. T. Land .

EL M. P. Land .

EL M. Land .

C L.M.F

Georgia

Howlett Period Co

19th 5 tith 1 air Place

ATLANTA, GA 201311

Tel (4M4) 85th Blain

Teles (133-768-4M8)

A C CM EM

Howlett Period Co

3617 Period Ca

361

Harwall
Howard Co.
Residuate Plans. Softward Softward
Softward Filip Siment
Modebulls Hill Will 13
Tal (Mill) Sub-12-16
A.C. E.M.

Iduhe Hewish Peskerd Ce 11 NS Chinden (Brd 80888 II) 63 III? Ish (303) 323-3700 C

Illinois
Heriett Facha d Co
304 Edwards Reset
FO Bax 1807
ELDRORGTON, IL 87701
Tel: (303) 662 9491
A C E.M.*

A C E.M."
Heelett Packerd Gr
SSE W Minisce \$1388
CECCASE II, Distant
Tel (312) \$30-0010
C
Howeldt Packerd Go
1000 East Dishi Pesal
NAPERVILLE II, 88988
Tel (312) \$21-8500
C

Secto 1103 FT WAYNE IN 45025 Tel: |2191 487 4290 C E

CE heard Februari Co efficiency for the control of the control of

Kentucky Healest Packard Cor 10000 Unin Techni Rusal Guile 100 Lotalystal Ciry 4000 Tel 1982 46840 BBI A C M

Tel JELISER HITTO CM Hendert Plackard I.e. 1888 Springer Rived ELEPTEARS 144 44 THE TEL JELISER 144 44 THE TEL JELISER 144 44 THE TEL JELISER 144 ALL HENDER LINE THE BEAUTISTIC THE BEAUTISTIC THE BEAUTISTIC THE TELESTIC THE STATE THE THE TELESTIC THE STATE THE THE TOLEDO CHI LIGHT TOLEDO CHI LIGHT A C M
Louisiana
Hewisti Pestuard Co
(8) James Drive East
ST BOSE LA YOURT
P O Ban 1448
KENKON LA 10064
Tet (864) 481-4 100
A C E N P ACEMP

Storyland
Hersett Fact and Co.
370 | Respect Street
BALTIMORE MD 1 1227
Yel (30 t) 64 4-30 to
Texas T (0-1-2-2-1943
ACCM E.M.

C Hewlett Poolsard La 879 Bronkundge Bled WESTERVILLE OH 48631 Tel (614) 891-0044 C CM 6

C. L.P.E.

Oktahoma
Newort-Pichard La

Stan B. W. Seln Bi
Sain G. 183

SKLARSMA CTY THE 71113

Tel (403 1946-9489
C.E. M.

Howlett Freekerd Cit.
UNATS THERE E A 9_ FIRST
THESE DI TA 144
TENTO 120 (SESSE)
A (EMTP

I Host 19-Posteri Cu III Zata Drive PRISSURBUN FA 15-238 Ter (413) 782-1400 A C E.M. Hewinth-Fisherd Co. 1780 Morrow Boule-and FALLEY FORDE FA. (1480 Tel. (118) 686-4000 A.C.CM E.M.

A.C DM E.H

Booth Cerolina
Headeth Perkerti Ca
Brosskold Fleth State 112
Harbeam Me,
columna SC 1982 II
Tel (MIN) 172-4400
C.H

Headeth Perkerti Da

JAH H Personathury Or

Marke 100
SCENONLE SC 19907
Tel (AN) 172-4400

Temperator
Heart Falter Co.
Dee Deep Cert Haber 300
Palcery for Haber 300
Palcery for Haber 300
Palcery for years
Tell (Haber 197)
Tell (Haber

A.C.EM P
Teases
Hewlett-Pechard Co.
1825-P (transcribers
1825-P (transcr

Hessial Pector Gri 1621 Horsto Crive 1621 Horsto Crive 1622 Horsto Crive 1621 Horsto Horsto Tel (11) 711-6422 A C Let F Howard Packer Gri 1201 Royal Lette 17764 Tr Social Tel (114) 803-2317 F E Hessial Packer Gri F E Hewlett-Pactord Co (09 E. Teronte Sucte (00 MatLLEN, Di 1980) Tel (113) 630-3000 E

Ter (1917/34-80) |
CE |
Hewelth | Lecturd Co.
2018 |
Gross Heep Office | IwaPALPROT Her (1948) |
Her (1948) |
Hewelth | Lecturd Co.
2014 |
Her (1948) |
Her (19 C
Hewitett-Produced Gai
1630 E Compited Rd
Introductions, Tx 15603
Tal [244;214-fill)
A C CAM EM F
Hewiteth-Produced Gai
1630 Genhal Performy Swath
SAN ARTORIO TX 76/LIX
Tal [410] 444-1635
A C EM F

Washington
Heel-H-Packad Cn
15819 3 E (7th Breel
RELLEYIE, WA RICHOR
Tel (1009) 943-4000
A C CM EM
Heelest-Peckard Cn
Harth Toll Argarete Rock
SPOR MRE, WA 1822 (5-2150)
Tel (1923) 923-7000

Wast Virginia Hewirtt Pachurd Co

A C M
Misconsin
Meserte Petituri Co
178 H Corporate Di
RODORNETO MESTAR
Tel (194) Isé-2003
A C E M
LINUQUAY
LISTO (194) Isé-2003
A C E M
LINUQUAY
LISTO (194) Isé-2003
A C E M
LINUQUAY
LISTO (194) Isé-2003
A C M
LINUQUAY

VENEZUELA
Reviet Facture de l'everpris C.A
34 fractivement Les Plates Norte
Edition Seyre 2 8.3
Agratide (1901)
CARLAGE (1901)
CARLAGE (1901)
Tel (4.8) (1914-191)
AC CARLAGE (1901)
AC CARLAGE

P
Albis Ferrazdona II R.L.
As Las Mortes, Ots, ACc
D Pethodol
Apartado Alocca
CARRACAS (CCCA
Tel 741184 T47146
Team Addits ALBIS) ICC
A

Technological Membra del Carlho, C.A. Multivariro Erruressarial del Carlo 4-a, Illectrical Carlo 6-bit Ubertudor Hondon Cr. Officina 83-42 CARACAS TO 200687 OCLUTES M.

Tal Limited Tutal Title

Hewards Peckard de Neumanus

Residencia no Dietri, Lina II a renda 31, mm Culas 71

a renda 31, mm Culas 71

Teles Marian Lina 1

C P
YUGOBLAVIA
Dn Hermes
General Edunori 4
(14-1)sizz BEOGRAF
Tel: (011):342:841
Take: 11433
A C E M P e L EM F
Din Harmes
Georgia 73
(1-8 into Lamela
Teir (08 i) 9/2 170
Tenne, 1/583
A C EM #
Entrandres
Titore 51
Titore 51
Titore 51
Titore 51
The Market CAM

CM hormos
Dis Hormos
Dis Hormos
Hildip Tormosana 19
111-7 IDIO SARRASTO
Telicus 1982
Telicus 1982
Telicus 1982
Computer & Inchastrial En
America de la Justice
EF 17797
KROMANA, Romine
Tel: 13357
C P

ZAMBIA RJ Tibury (Turnim) Ltd F C Box 12701 LUBAKA Tel 7 (1988) Teles 40 Lth

OPERATION AND SERVICE MANUAL

MODEL 4277A LCZ METER

(Including Options 001 and 002)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2228J.

© COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1982 9-1, TAKAKURA-CHO, HACHIOJI-SHI, TOKYO, JAPAN

MANUAL PART NO. 04277-90000 Microfiche Part No. 04277-90050

Printed: JAN. 1984

-

YID MKTG INTER-OFFICE MEMO

page 1/

MKTG#L

FROM: YID MKTG 田中(豊)

C/C:

DATE: 85.08.28

FILE NO .: MKTG-MEMO-85- 3070

SUBJECT: 4dク7Aのパウオーマンステストのマニュアル変更のお願い

7== PIL 4-25 16064A COMPARATOR / HANDLER INTERFACE TEST において誇りの訂正および追記をお願い いたします。

(訂正) パージ 4-21 PROCEDURE:4

(34) Test Frequency (00 KHz

(I) Test Frequency 10.0 KHz

(変更) パージ 4-23 PROCEDURE:7 Press the 16034A's ERASE Key and set the _ . . .

Press the 16034 A's ENABLE and ERASE and set the

(追記) 4-24 PROCEDURE:19 ELZ Reset the jumpers AlWI/W2/W3 in the 16064A.

WI

17/1 No. 4277A 18/2 17/1 No. 18/2 17/1 No. 18/2 17/1 No. 18/2 18		122 部 但当在()股 -> 4-田(file)	
押題 応対の内容 如理 16048C E つけて Self-Teitをするで E-4をか出る。 16048C E つけて Self-Teitをするで A 型が出る。 16048C E つ	モデルNo. オプション	4.2.7.7A 客先名 FE/CE/SE () 本	
日時 応対の内容 如理 (MRTIO)	Part No.	Tel.	
1604PC とつけて Self-Tertをするで E-4をか 出る。 = の で	標題		
16048C E > IT Z Self-Testをするを (本) 出る。 - のではない とない このではない とない このではない このではない このではない このではない このではない スート できない スート マニュアルトは ギニースト・フェケストナを持ている しょしょ これ	日時	应 对 a 内 容	如 理
20 (1 C) (1 C) (1 C) (1 C) (1 C)	785, 11. 19	The true of the form of the true of the	

Model 4277A SECTION IV

Table 4-1. Recommended Equipment (Sheet 1 of 2)

Equipment	Critical Specifications	Recommended Model/Note	Use*
Digital Voltmeter	Voltage range: 10mV to 100Vf.s. Resolution: 0.1mV Accuracy: 0.05% Input impedance: >10MΩ	НР 3478А	Р, А, Т
RF Voltmeter	Voltage range: 10mV to 3Vrms f.s. Bandwidth: 10kHz to 1MHz Accuracy: 1%	HP 400E and HP 3403C	Р, А
Frequency Counter	Maximum frequency: >1MHz Accuracy: 0.001% Trigger level: Adjustable	HP 5314A	Р, А, Т
DC Power Supply	Maximum output voltage: >50V Resolution: <100mV	HP 6206B	Р
Oscilloscope	Bandwidth: 100MHz Sensitivity: 5mV/DIV	HP 1740A	Α, Τ
Oscillator	Frequency: 1kHz Output voltage: 1mV	HP 652A	1
Signature Analyzer		HP 5004A	1
Test Cables	BNC (m)-to-BNC (m), 61cm long, 1 ea.	110 8130 1854 HP=11170B	Р, А
	BNC (m)-to-BNC (m), 10cm long, 1 ea.	TN 8176-1838/	
	BNC (m)-to-BNC (m), 30cm long, 2 ea.	HP=11170A-	
	BNC (m)-to-Dual Banana Plug, 1 ea.	HP 11001A	
	Dual Banana Plug-to-Alligator Clip, 1 ea.	HP 11002A	Р, А, Т
	BNC (m)-to-Dual Alligator Clip,10cm long, 2 ea.	Refer to the troubleshooting diagram A2-17.	T
	Alligator Clip-to-Alligator Clip, 20cm long, 1 ea.		T
Adaptors	BNC (f)-to-BNC (f), 5 ea.	HP P/N 1250-0080	Р, Г
Oscilloscope Probes	10:1 Divider Probe Input impedance: 10MN	HP 10004D	Α, Γ
	1:1 probe	HP 10007B	А
Test Leads		HP 16048A	Р, Т

^{*}P = Performance Test, A = Adjustment, T = Troubleshooting

Table 4-1. Recommended Equipment (Sheet 2 of 2)

Equipment	Critical Specifications	Recommended Model/Note	Use*	
Capacitance Standards	1pF±0.03% 10pF±0.03% 100pF±0.03% 1000pF±0.03% Useable frequency: Up to 1MHz	HP 16381A HP 16382A HP 16383A HP 16384A	P, A, T	
Resistance Standards	0Ω 10Ω $100\Omega\pm0.03\%$ $1k\Omega\pm0.03\%$ $10k\Omega\pm0.03\%$ $100k\Omega\pm0.03\%$ OPEN termination SHORT termination	HP 16074A Standard Resistor Set	P, A, T	
Capacitors	lnF±5%	HP P/N 0160-2218	Т	
Resistors	4.7Ω±5% 1/4W	HP P/N 0683-0475	Т	
	560Ω±5% 1/4W	HP P/N 0683-5615	T	
	1kΩ±5% 1/2W	HP P/N 0757-0159	Т	
	10kΩ±1% 1/2W	HP P/N 0757-0839	T	
	100kΩ±1% 1/8W	HP P/N 0757-0465	T	
HP-IB Controller		HP-85/ w 00085-15003/ w 82936A/ w 82937A	A	

^{*}P = Performance Test, A = Adjustment, T = Troubleshooting

エクステンダ ボード PN 追加

PERFORMANCE TESTS

TEST FREQUENCY ACCURACY TEST 4-9.

4-10. This test verifies that test signal frequencies for the 4277A meet the specified frequency accuracy of 0.01%.

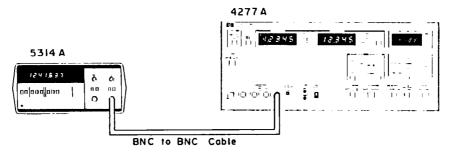


Figure 4-1. Test Frequency Accuracy Test Setup.

EQUIPMENT:

PN 6120-1836

PROCEDURE:

- 1. Connect the frequency counter to the 4277A UNKNOWN How terminal as shown in Figure 4-1.
- 2. Set the 4277 A's controls as follows:

TEST SIG LEVEL HIGH DC BIAS switch OFF Test Frequency......10kHz Other controls Any setting

- 3. Verify that the frequency reading on the 5314A is 10.000kHz±1Hz.
- 4. Set the test frequency in the sequence given in Table 4-2. Verify that the frequency readings on the 5314A are within the test limits given in the table.

Table 4-2. Test Frequency Accuracy Test

Frequency Setting	Test Limits
10.0kHz	9.999 to 10.001EHz
100kHz	99.99 to 100.01kHz
202kHz	201.98 to 202.02kHz
500kHz	499.95 to 500.05kHz
1.00MHz	0.9999 to 1.0001MIz

Note

- 1) Test limits in the table do not account for tolerance dependent on the specified accuracy of the 5314A.
- 2) If this test fails, the instrument requires troubleshooting.

PERFORMANCE TESTS

4-11. TEST SIGNAL LEVEL ACCURACY TEST

4-12. This test verifies that test signal level for the 4277A meets the specified level accuracy of 10%.

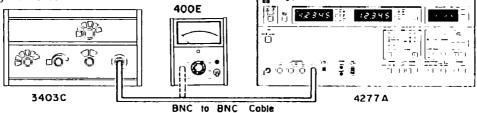


Figure 4-2. Test Signal Level Accuracy Test Setup.

EQUIPMENT:

Use RF Voltmeter calibrated for frequency response of 10kHz to 1MHz.

PROCEDURE:

- Connect the 3403C to the 4277A UNKNOWN Hour terminal as shown in Figure 4-2.
- 2. Set the RANGE control of the 3403C as appropriate to measure lVrms.
- 3. Set the 4277A's controls as follows:

DC BIAS switch	OFF
Test Frequency	l0kHz
TEST SIG LEVEL	
Other controls	

- 4. The 3403C should read between 0.9V and 1.1Vrms.
- 5. Successively change the test frequency setting to 100kHz and 1MHz. The voltage readings on the 3403C should be within the test limits given in Table 4-3.
- 6. Replace the 3403C with the 400E. Set the TEST SIG LEVEL to LOW.
- 7. Set the test frequency in accordance with Table 4-3. Verify that the voltage readings on the 400E meet the test limits given in the table.

Table 4-3. Test Signal Level Accuracy Test

Frequency Level	10kHz	100kHz	1MHz	Equipment	
High (1Vrms)		0.9 to 1.1Vrms	0.9 to 1.1Vrms	HP 3403C	
Low (20mVrms)	17 to 23mVrms	17 to 23mVrms	18 to 22mVrms	HP 400E	

ADJUSTMENTS

EQUIPMENT:

PROCEDURE:

- 1. Connect the 400E to the UNKNOWN Hour terminal of the 4277A using a BNC (m) to BNC (m) cable as shown in Figure 5-3.
- 2. Set the 4277A's controls as follows:

Test Frequency	lMHz
TEST SIG LEVEL	HIGH
DC BIAS	OFF
Other Controls	Any setting

- 3. Set RANGE of the 400E to IVrms.
- 4. Adjust A2R6 (LEVEL) until the reading on the 400E is 1.00V±0.01V.
- 5. Set the Test Frequency and the Test Signal Level in accordance with Table 5-5. Verify that the reading on the 400E is within the test limits given in the table. Change the 400E's range as appropriate for the test signal level.

Table 5-5. Test Signal Level Test Limits

Test	Test L	ımits
Frequency	TEST SIG LEVEL "HIGH"	TEST SIG LEVEL "LOW"
1MH z	0.99V to 1.01V	*(18.8mV to 21.2mV)
100КН г	0.94V to 1.06V	18.2mV to 21.8mV
10KHz	0.94V to 1.06V	

Note

For test limits marked with and asterisk *, if a reading on the 400E is greater than 21.2mV, change the value of A2R31 (82.5 Ω) to 78.7 Ω . If it is less than 18.8mV, change the value of A2R31 to 86.6 Ω . Refer to Table 5-2 for the part number of the appropriate resistor.

Table 6-3. Replaceable Parts

	Table 0-3. Replaceable raits					
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A101 H102 H103 H104 H105	1813-0291 1826-0978 1826-0180 1820-2649 04276-85011	7 4 9 8 5	1 1 1 1	IC-CRYSTAL 11.52 M IC (MISC) IC TIMER TIL MONO/ASTEL IC- Z00B-CPU PROM-PROGRAMMED	28480 28480 01275 28480 28480	1913-0291 1826-0978 NES55P 1026-2649 04276-85011
A1U6 A1U7 A1U8 A1U9 A1U10	04277-85012 04277-85003 04276-85004 04276-85005 04276-85016	6 7 8 9	1 1 1 1	PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED PROM-PROGRAMMED	28480 28480 28480 28480 28486	04277-85012 04277-85003 04276-85004 04276-85005 04276-85016
A1UI2 A1UI3 A1UI4 A1UI5 A1UI6	1818-1974 1820-2024 1820-2024 1820-1730 1820-1217	5 3 6 4	1 2 1 1	IC-MSh5128-15 IC DRVR TTL LS LINE DRVR OSTL IC DRVR TTL LS LINE DRVR OSTL IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC MUXR/DATA-SEL TTL LS 8-TO-1-LINE	29480 01275 01275 01275 01275	1818-1974 SN74L5244N SN74L5244K SN74L5273N SN74L5151N
A1U17 A1U18 A1U19 A1U20 A1U21	1820-1197 1820-1112 1820-1197 1820-0682 1820-1197	9 B 9 5 9	4 5 1	IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL S NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP	01295 01295 01295 01295 01295	SN74L500N SN74L574AN SN74L500N SN74503N SN74L500N
A1U22 A1U23 A1U24 A1U25 A1U26	1820-1216 1820-1199 1820-0681 1820-2150 1820-1216	3 1 4 6 3	4 3 1 1	IC DODR TTL LS 3-TO-8-LINE 3-INP IC INV TTL LS HEK 1-INP IC GATE TTL S MAND QUAD 2-IMP IC MICPROC-ACCESS MADS IC DODR TTL LS 3-TO-8-LINE 3-INP	01295 01275 01295 34649 01295	5N74L513BN 5N74L504N 5N7450BN D8279-5 SN74L513BN
A1U27 A1U28 A1U29 A1U30 A1U31	1820-1112 1820-1112 1820-1420 1820-1432 1820-1432	8 1 5 5	1 2	IC FF TIL LS D-TIPE POS-EDGE-TRIG IC FF ITL LS D-TIPE POS-EDGE-TRIG IC CNTR TTL LS DIV-X-12 ASYNCHRO IC CNTR TTL LS DIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS DIN SYNCHRO POS-EDGE-TRIG	01275 01275 01275 01275 01275	SN74LS74AN SN74LS74AN SN74LS92N SN74LS163AN SN74LS163AN
A1U32 A1U33 A1U34 A1U35 A1U36	1820-1112 1820-1199 1820-2075 1820-1216 1820-1624	B 1 4 3 7	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC INV TTL LS HEX 1-INP IC MISC TTL LS IC DCDP TTL LS 3-TO-8-LINE 3-INP IC BFR TTL S OCTL 1-INP	81295 01295 01295 01295 01295	SN74L574AN SN74L504N SN74L5245N SN74L513BN SN74S241N
A1U37 A1U38 A1U39 A1U41 A1U42	1820-1199 1820-1197 1820-2873 / 1820-1216 1820-1112	1 9 0 3 8	1	IC INV TTL LS HEX 1-INP IC GATE TTL LS NAND QUAD 2-INP IC-UPDB253-5 IC DCDR TTL LS 3-ID-8-LINE 3-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG	01275 01275 28490 01275 01275	SN74L504N SN74L500N 182C-2873 SN74L513CN SN74L574AN
A1843-15 = 4669	1820-1425 1826-0122	6	1 1	IC SCHMITT-TRIG TTL LS NAND QUAD 2-IMP IC 7805 V RGLTF TO-220	01295 07263	5N74L\$132N 7805UC
A1W1 A1W2 A1W3 A1W4 A1W5	1251-4922 1251-4822 1251-4822 1251-4787 8159-0005	9 9 9	3 1 1	CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE SHUNT-DIP 8-POSITION RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480 28480 28480 28480 28480	1251-4822 1251-4822 1251-4822 1251-4787 8159-0005
* * • • • • • • • • • • • • • • • • • •				HISCELLANEGUS PARTS		
KAN CO. 6	1258-0141 04276-26501 04276-01203	8	3	JUMPER-REM PC BOARD, BLANF ANGLE (BOARD)	28490 28480 28480	1258-0141 04276-26501 04276-01203

Table 6-3. Replaceable Parts

Table 0-3. Replaceable Parts						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2C146 A2C147 A2C149 A2C150 A2C151	0180-2951 0160-4830 0160-4835 0180-2951 0160-5501	62766	1	CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 2200FF +-10% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR- 0.1 UF 100VDC F	28480 20480 20480 28480 28480 20488	0180-2451 0160-4830 0160-4835 0180-2751 0160-5501
ARC152# ARC153# ARC154# ARC155 ARC156	0160-5595 0160-5596 0160-5592 0160-5494 0160-0127	8 9 5 6 2	1 2 1	CAPACITOR- 2 PF +/5 PF CAPACITOR- 3 PF +/5 PF CAPACITOR- 10PF +/5 PF CAPACITOR-FXD 2 2 UF 5% 1000DC CAPACITOR-FXD 1UF +-20% 25UDC CER	28480 20480 28480 20400 28480	0160-5575 0160-5576 0160-5572 0160-5474 0160-0127
A2C157 A2C158 A2C159 A2C160 A2C161	0160-4835 0180-2951 0180-2951 0160-4812 0160-4835	7 6 6 0 7		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 33UF+-20% 16VDC AL CAPACITOR-FXD 220FF +-5% 100VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	20480 28480 28480 28480 28488	0160-4635 0100-2951 0180-2751 0160-4812 0160-4835
A2C162	0180-2951	6		CAPACITOR-FXD 33UF+-20% 16VDC AL	28480	0180-2951
AZCR1 AZCR2 AZCR3 AZCR4 AZCR4	1902-0041 1902-0041 1902-3059 1902-3059 1902-3059	4 0 0	2	DIODE-ZNR 5.11V 5% DO-35 PD=.4W DIODE-ZNR 5.11V 5% DO-35 PD=.4W DIODE-ZNR 3.83V 5% DO-35 PD=.4W DIODE-ZNR 3.83V 5% DO-35 PD=.4W DIODE-ZNR 3.83V 5% DO-35 PD=.4W	28480 28480 28480 28480 28480	1902-0041 1902-0041 1902-3059 1902-3059 1902-3059
APCR6 A2CR7 A2CR8 A2CR9 A2CR9	1902-3059 1901-0033 1901-0033 1902-3082 1902-3082	0 2 2 9	G -4	DIODE-ZNP 3.83V 5% DO-35 PD=.4W DIODE-GEN PRP 180V 200HA DO-7 DIODE-GEN PRP 180V 200HA DO-7 DIODE-ZNR 4.64V 5% DO-35 PD=.4W DIODE-ZNR 4.64V 5% DO-35 PD=.4W	20 480 29 480 29 480 29 480 28 480	1907-3059 1901-0033 1901-0033 1902-3002 1902-3002
A2CR11 A2CR12 A2CR13 A2CR14 A2CR15	1901-0033 1901-0033 1901-0040 1901-0040 1901-0040	2 1 1 1	11	DIODE-GEN PRP 180V 200HA DO-7 DIODE-GEN PRP 180V 200HA DO-7 DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 30V 50HA 2NS DO-35	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0040 1901-0040 1901-0040
A2CR16 A2CR17 A2CR18 A2CR19 A7CR20	1901-0040 1901-0033 1901-0033 1901-0040 1901-0040	1 2 2 1 1		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	20400 20400 28400 28400 20400	1701-0040 1701-0033 1701-0033 1701-0040 1701-0040
A2CR21 A2CR22 A2CR23 A2CR23 A2CR24 A2CR25	1901-0040 1901-0040 0122-0153 1901-0040 1901-0040	1 1 4 1	1	DIOPE-SWITCHING 3DV SONA 2NG DO 35 DIODE-SWITCHING 3DV 50NA 2NS DO-35 DIODE-VVC 50OPF +-102 PD-100NW DIODE-BWITCHING 3DV 50NA 2NG DO-35 DIODE-SWITCHING 3DV 50NA 2NG DO-35	28480 28480 28480 28480 28480 28480	1701-0040 1701-0040 0172-0153 1701-0040 1701-0040
APCR26 A2CR27 A2CR28 A2CR29 A2CR30	1901-0040 1902-3002 1902-3082 1901-0033 1901-0033	1 9 2 2		DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-ZNR 4 64V 5X DO-35 PD= 4W DIODE-ZNR 4.64V 5X DO-35 PD=.4W DIODE-GEN PRP 180V 200HA DO-7 DIODE-GEN PRP 180V 200HA DO-7	28480 28480 28480 28480 28480	1701-0040 1702-3302 1702-3302 1701-0033 1701-0033
A2K1 A2K2	0490-1269 0490-1269	4	2	RELAY 1C 12VDC-CDIL .66A 38VDC RELAY 1C 12VDC-CDIL .66A 38VDC	7'8480 28480	0470-1269 0490-1269
A2L1 A7*L2 A2L3 A2L4* A2L5	9100-1629 9100-1625 9140-0697 9100-2247 9100-0824	4 0 B 4 9	1 1 1 2	INDUCTOR RE-CH MLD 47UH 5% 166D% 3USLG INDUCTOR RE-CH-MLD 33UH 5% 166D% 3DSLG IRANSFORMER- 100 MH INDUCTOR RE-CH-MLD 100NH 10% 105D%.26LG COJL CHOKE 100 UH	28480 28480 28480 20480 28480	9100-1629 9100-1625 9140-0697 9100-2247 9100-0824
A2L6#	9100-2251	0	i	INDUCTOR RF-CH-MLD 220NH 10% .105Dx.26LG	28480	9100-2251
A2Q1 A7Q2 A2Q3 A7Q4 A2Q5	1854-9810 1854-9810 1854-9810 1854-9810 1854-9810	NNSNN	5	TRANSISTOR NEW SI PD=625HW FT=200HHZ TRANSISTOR NEW SI PD=625HW FT=200HHZ TRANGISTOR NEW SI PD=625HW FT=200HHZ	28480 28400 28480 28480 28480	1854-9010 1854-0810 1854-0810 1854-0810 1854-0810
AR96 A297 A298 A299 A2910	1854-0127 1855-0111 1855-0111 1855-0111 1855-0111	688 86	2 3	TRANSISTOR-NPN 2561636 TRANSISTOR-FET ?9K49FD- TRANSISTOR-FET 29K43ED - TRANSISTOR-FET 29K43ED - TRANSISTOR-NPN 2561636	28490 28490 28490 20480 28490	1854 49129) 1855-0111 1855-0111) US71 1855-0111 1854 1857)
A2R1 A2R2 A2R3 A2R4 A2R5	0683-4715 0757-0416 0757-0280 1810-0347 1810-0347	0 7 3 9 8	1 2 1 6	RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 NETWORK-RES 8-SIP2.2K OHM X 4 NETWORK-RES 8-SIP2.2K OHM X 4	D1121 24546 24546 01121 01171	CR4715 C4-1/8-T0-511R-F C4-1/8-T0-1001 F 20HD222 208B222
ACR6 ACR7 ACR8 ACR9 ACR10	2100-2574 0683-5615 1810-0347 1810-0347 0683-5615	3 1 8 R 1	<u>ء</u> 1	PESISTOR-TPMR 500 10% C SIDE-ADT 1-TPN RESISTOR 560 5% .25W FC TC=-400/+600 NETWORK-RES 8-SIP2.2K OHM X 4 NETWORK-RES 8-SIP2.2K OHM X 4 RESISTOR 560 5% .25W FC TC=-400/+600	30983 01121 01121 01121 01121	E150/501 CB5615 2008227 2088222 CB5615

Table 6-3. Replaceable Parts

HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
0603-3335 0603-1575 0603-1675 0603-1035 0603-1035	B 4 1 1	1 1	RESISTOR 3AK 5% 25W FC 1C= 40024009 RESISTOR 1 5% 5% 25W FC TC=4002700 RESISTOR 10K 5% 25W FC TC=40027700 RESISTOR 10K 5% 25W FC TC=40027700 RESISTOR 10K 5% 25W FC TC=40027700	8 1 1 2 1 8 1 1 2 1 9 1 1 2 1 9 1 1 2 1 9 1 1 7 1	LB3**5 C135,75 CB1037 CB1037 CB1037 CB1037
0678-3160 8683-2215 8683-2215 8683-1005 8683-1005	8 1 5 5	1	RESISTOR 31.08 12 .125W F IT = 0.1-100 RESISTOR 220 52 .75W FC IC= 4002+600 RESISTOR 220 52 .25W FC IC=-4007+600 RESISTOR 10 52 .25W FC IC=-4007+500 RESISTOR 10 52 .25W FC IC=-4007+500	24546 01121 01121 01121 01121	C4 1 H 1P 11/2 F CH2215 CH2215 CB1995 CD1005
1810-0305 0757-0401 0757-0459 1810-0305 0683-3315	17 0 19 9	2 1 2	NETWORK-RES 9-5104 OF OTH K O RESISTOR 100 14 125W F TC=0+100 RESISTOR 56 /K 1% 175W F TC=0+100 NCTWORK-RES 9 5104/7K OMA K B RESISTOR 330 5% 25W FC TC=+400/4600	20400 24546 20546 20400 01121	1910-9305 C4 1 8-70 101 F C4 1 0 19-5622 F 1010 0305 C8315
0698-3157 0699-1019 0698-4157 0699-1019 0698-4157	34545	1 2 2	RESISTOR 19 6K 12 175W F 1C=0+-100 RESISTOR - 7 074K 0 1W PISISTOR 10K 17 125W F TC=0+-50 RESISTOR - 7.021K 0.1W RESISTOR 10K 12 125W F TC=0+-50	245/46 713/400 713/400 713/400 713/400	E4 1 E-TD-15G ¹ -F 1 G1-1014 G1-1 4157 2677-1119 G670-4157
0603-3315	7 4		PESISTOR 1K 5% 75W FC TC=-4007+600 RESISTOR 330 5% ,25W FC TC=-4007+600	91121 81171	C101025 C103415
9140-0698 9140-0698 9190-0823 9140-0698 9100-0023	9 8 9 8	3	TRANSFORMER TPANSFORMER TRANSFORMER - PULSE 11381 TPANSFORMER - PULSE 11381 TRANSFORMER - PULSE 11381	20400 26490 28490 28490 26490	9140-9698 9140-0698 9180-0693 9140-0690 9130-0693
9100-0823	8		TRANSFORMER- PULSE 11301	28400	9100 0873
1013-0255 1813-0255 1813-0255 1813-0255 1813-0300	1 1 1 9	13	IC (HISC) IC (HISC) IC (HISC) IC (HISC) IC (HISC) IC (HISC)	201480 201480 20480 208400 40000	1013-079 1013-079 1013-0795 1013-0795 1013-0300
1813-0300 1026-0122 5080-3837 1826-0122 1820-0693	7 0 2 0 8	6 1 1	IC (HISC) IC 2005 V ROLIR TO-220 IC V ROLIR TO-220 (SEL) IC 2005 V ROLIR TO-220 IC FF IIL S D-TYPE POG-EDGE-TRIG	28490 07263 04713 07263 01775	11113-0-300 TD3516 H.7907 ZCT TU350F SN74574N
1813-0297 1826-0519 1820-8630 1820-1430 1820-1244	3 9 3 3 7	i i i 1	IC (HISC) IC OR AMP_LOW_BIAS_H_IHPD_R-DIP_P PKG- TC MISC III IC CHIP III LS BEN STNCHOD POS-EDGE-IPIG IC HUXP/DATA-SEL IIL LS 4 TO 1-LINE DUAL	28488 01295 04213 01275 01275	1013-0297 TL071CP HC4044P SN 4151616N SN2415153N
1820-2885 1820-0683 1826-0122 1813-0381 1813-8381	4 6 0 0	1 1 2	IC- HD74L5370 IC INU TIL 5 HEK 1-INP IC 7805 V RGLIR TO-220 IC (HISC) IC (HISC)	28488 01295 07263 28480 78480	1820 2005 5874/504N 78051C 1013 0301 1013-0301
4870-1313- 1013-0298 1813-0300 1013-0300 1813-0298	1 4 9 9 4	5	IC HULTIPLXP 2-CHAN-ANLG TRIPLE 16 DTP-P IC (HTSC) IC (HTSC) IC (HTSC) IC (HTSC)	-31 505 20 180 28400 201480 28400	CD40518F 3013-0290 1013-0300 1013-0300 1013-0300
1020-1730 5080-3838 1026-0147 1026-0971 1826-0971	6 0 7 7	.; 5 3 4	IC FE IIL L'E DETYPE PUS EDGE-TRIG COM IC V RGLER TG-228 (SEL) IC 7012 V RGLIR 19-228 IC- UPC7908H IC- UPC7908H	04713 04713 04713 28480 28480 28480	51074L5,0170 81 79191 T 81 791 LP 1026 0971 11126-0971
18/26-0146 1026-0146 5080-3838 1026-0147 18/20-2111	8 8 0 7	4	IC 7808 V PGLTP TO-220 IC 7898 V RELTR TO-220 IC V RGLTR TO-220(SEL) IC 7812 V RGLTR TO-220 IC DRVR TTL INV	04713 04713 04713 04713 01795	MC7000EP MC780EP MC791211 MC7811CP SNT5468N
1820-1314 1813-0297 1813-0300 1813-0300 1813-0300	25 9 9	2 5	IC MULTIPLER & CHAN-ANLG DUAL 16-DIP-P IC (HISC) IC (HISC) IC (HISC) IC (HISC)	31505 28490 28490 28490 28490	CD 0.05 0.
1813-0300 > 1820-1313- - 4820-1313- 1813-8299 -1820-1313-	9 1 1 5		IC (MISC) IC MULTIPLER 2-CHAN-ANLG TRIPLE 16 DIP-P IC MULTIPLER 2-CHAN-ANLG TRIPLE 16-DIP-P IC (MISC) IC MULTIPLER 2-CHAN-ANLG TRIPLE 16-DIP-P	28480 -41 585 -31 587 -71480 -31 505	11113-0300 FB40511C -CB4053F 1013-0299 -CB4053F -
	Number 0.603-4335 0.603-1575 0.603-1035 0.603-1035 0.603-2015 0.603-2015 0.603-2015 0.603-2015 0.603-1005 1010-0305 0.603-1005 1010-0305 0.603-1005 0.603-1005 0.603-1005 0.603-1005 0.603-3315 0.698-3157 0.699-4157 0.699-4157 0.699-4157 0.699-4157 0.699-4157 0.699-4157 0.699-4157 0.698-3153 010-0.698 0100-0.698 01	Number D 0603-4335 0 0608-1575 4 0603-1035 1 0603-1035 1 0603-1035 1 0603-2215 1 0693-2215 1 0693-2215 1 0693-2215 1 0693-2215 1 0693-2215 1 0693-2215 1 0693-2215 1 0693-3215 2 0693-1005 5 0603-1005 5 0603-1005 7 0603-1005 7 0603-1005 7 0603-1005 7 0603-3315 4 0698-3157 3 0698-315	Number D Qty 0603-4335	Number D City Description	Number D Code

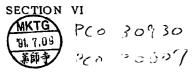


Table 6-3. Replaceable Parts

Table 0-3. Replaceable Farts						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A4CR31 A4CR32 A4CR33 A4CR34 A4CR35	1901-1065 1901-1065 1901-1065 1902-3191 1901-0025	22212	3 1	DIODE-PUR RECT 1N4936 400V 1A 200NS DIODE-PUR RECT 1N4936 400V 1A 200NS DIODE-PUR RECT 1N4936 400V 1A 200NS DIODE-ZNN 13V 2Z DO-35 PD= 4W TC=+.06% DIODE-GEN PRP 100V 200MA LD -7	1 4936 1 4936 1 4936 28488 38480	1N4736 1N4936 1N4936 1907-3191 1901-0025
A4CR36	1906-0080	9	1	DIODE-FW BRDG 600V 10A	28480	1906-0080
A4F1 A4F2 A4F3	2110-0004 2110-0305 2110-0007	1 5 4	1 1 1	FUSE .25A 250V NTO 1.25x.25 UL FUSE 1.25A 250V TD 1.25x.25 UL FUSE 1A 250V TD 1.25x.25 UL	28480 75915 75915	2110-0004 3131.25 313001
A4J1 A4J2	1251-4938 1251-3837	5 1	1 1	CONNECTOR 3-PIN M METRIC POST TYPE CONNECTOR 4-PIN M UTILITY	20480 28480	1251-4938 1351-3837
A4L1 A4L2 A4L3 A4L4 A4L5	9100-3139 9140-0171 9140-0171 9140-0758 9140-0758	55888	1 6 2	INDUSTOR 75UH 15% .5DX.875LG INTUCTOR RF-CH-MLD 40UH 10% .296DX.968LG INDUSTOR RF-CH-MLD 40UH 10% .296DX.968LG INDUSTOR - 787 UH INDUSTOR- 787 UH	28490 78480 26460 28480 28480	9100-3139 9148-0171 9148-0171 9140-0758 9140-0758
A4L6 A4L7 A4L8 A4L9 A4L10	9140-0171 9140-0171 9140-0462 9140-0757 9140-0171	33503	1	INDUCTOR RE-CH-MLD 400H 10% .296D%.96BLG INDUCTOR RE-CH-MLD 48UH 10% .296D%.96BLG INDUCTOR 1550H INDUCTOR- 980 UH INDUCTOR RE-CH-MLD 400H 10% .296D%.968LG	28480 28480 28480 28480 28480	9140-0171 9140-0171 9143-0462 9140-0757 9140-0171
A4L11 A4L12 A4L13	9140-0463 9140-0171 9140-0210	6 3 1	1	INDUCTOR 10MH 6% INDUCTOR RE-CH-MLD 40UH 10% 276D% 968LG INDUCTOR RE-CH-MLD 100UH 5% 166D% 305LG	28480 28480 28480	9140-0463 9140-0171 9146-0210
A4Q1 A4Q2 A4Q3 A4Q4 A4Q5	1853-0281 1854-0427 1854-0427 1854-0427 1854-0427 1853-0281	9 7 7 7 9	3 5	TRANSISTOR PNP 2022937A SI 10-18 PD=400MW TRANSISTOP NPN 202222A SI TO-18 PD=500MW TRANSISTOR NPN 20222A SI TO-18 PD=500MW TRANSISTOR NPN 20222A SI TO-18 PD=500MW TRANSISTOR PNP 20220A SI TO-18 PD=400MW	04713 04713 04713 04713 04713	2N2987A 2N2228A 2N2222A 2N2222A 2N2222A
A496 A497 A498 1850 - 0767 E A499 A4910	1854-0477 1853-0281 1854-0524 - 1854-8624 1854-0935	7 9 6 6 2	2	TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR PNP 2N29N7A SI TO-18 PD=400MW TRANSISTOP NPN 2N430B SI TO-3 PD=125W TRANSISTOR NPN 2N630B SI TO-3 PD=125W TPANSISTOP-NPN	04713 04713 04713 04713 28400	2N2222A 2N2907A 2N4308 2N6308 1854-0935
A4011 1854-1167 A4012	-1854-09 3 6 1854-0477	3 7	1	TRANSISTOR-NPN TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	28480 04713	1854-0936 2H2222A
A4R1 A4R2 A4R3 A4R4 A4R5	0483-2235 0483-4705 0483-1005 0483-1515 0483-1025	58529	1 3 3 1 3	RESISTOR 22K 5% .25W FC TC=-400/+000 PESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 150 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB2735 CE4705 CB1035 CB1515 CB1075
A4R6 A4R7 A4R8 A4R9 A4R10	0683-1025 0683-4715 0683-4715 0683-4735 0683-4735	9 D 0 4 4	3	PESISTOR 1K 52 .25W FC TC=-400/+600 RESTSTOR 470 5% .25W FC TC=-400/+600 PESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+000	01121 01121 01121 01121 01121	CB1025 CB4715 CF4715 CF4735 CB4735
A4R11 A4R12 A4R13 A4R14 A4R15	9683-4715 9683-1525 9683-1525 9683-4795 9683-4795	0 4 4 8 8	2	RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 1.5% 5% .25W FC TC=-400/+700 RESISTOR 1.5% 5% .25W FC TC=-400/+700 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB4715 CB1525 CB1525 CB1525 CD4705 CB4705
A4R16 A4R17 A4R18 A4R19 A4R20	2100-3352 2100-3274 0683-1025 0764-0015 0683-0335	7 2 9 7 2	1 1 2	RESISTOR-TRMR 1% 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 10% 10% C SIDE-ADJ 1-TRN RESISTOR 1% 5% 25% FC TC=-400/+600 RESISTOR 560 5% 2% MO TC=0+-200 RESISTOR 3.3 5% .25% FC TC=-400/+500	20 480 28480 01121 28480 01121	2100-3352 2130-3274 CB1025 0764-3015 CB33G5
A4R21 A4R22 A4R23 A4R24 A4R25	0483-1805 0483-0335 0483-1005 0483-5415 0483-1035	5 2 5 1	1	RESISTOR 10 5% .25W FC TC=-400/+500 PESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 560 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1005 CH33C5 CB1005 CB5615 CB1035
A4R26 A4R27 A4R28 A4R29 A4R30	0683-0275 0683-0275 0683-0275 0683-0275 0766-0033	9 9 9 3	4	RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 2K 2% 3W MO TC=0+-250	01121 01121 01121 01121 27167	CT27C5 CB27C5 CB27C5 CB27C5 FP3-3-250-2001-G
A4R31 A4R32 A4R33 A4R34 A4R35	0761-0004 0699-1057 0686-3945 0683-5635 0686-1055	8 4 2 5 1	1 1 1 1	RESISTOR 20K 5% 1W MO TC=0+-200 RESISTOR- 15 0HM 10% 3W RESISTOR 390K 5% 15W CC TC=0+002 RESISTOR 56K 5% 125W FC TC=-400/+800 RESISTOR 1M 5% 15W CC TC=0+1000	28480 28480 31121 01121 01121	0761-0004 0699-1057 CB3945 CB5535 EB1055
A4R 36 A4R37 A4R 38	0698-3657 0698-3657 0811-1670	8 8 3	2 1	RESISTOR 68K 5% 2W MO TC=0+-200 RESISTOR 68K 5% 2W MO TC=0+-200 RESISTOR 2.2 5% 2W PW TC=0+-400	27167 27167 75042	F742-2-T00~6802-J FP42-2-T00-6802-J BWH2-2R2-J
		\perp				

SECTION VI MK 91.3

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts						
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number	
A4RT1	0039-0006	5	1	THERMISTOR DISC	28480	0839-0006	
A4T1 A4T2 A4T3	9100-4287 9100-0857 9100-4293	1 8 2	1 1 1	TRANSFORMER-POWER 1RANSFORMER-PULSE 114H1 TRANSFORMER-PULSE	28480 28480 28480	9100-4287 9100-0857 9100-4293	
A4U1	1813-0255	3	1	IC-REGULATOR, HYBRID	28480	1813-0255	
A4RV1 A4RV2	0837-0237 0837-0106	8	1	IC-REGULATOR, HYBRID VARISTOR VARISTOR VARISTOR	28480 28480	0837-0237 0837-0106	
A4W1	501-1747 8159-0005	8	ı	RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	8157-0805	
	2110-074			MISCELLANEOUS PARTS		•	
	2110-0269 04276-01204 04276-00613 04276-00614 04276-00615	0 4	6 1 1 1	FUSEHOLDER-CLIP TYPE.25D-FUSE ANGLE (HEATSINK) SHIELD COVER SHIELD COVER SHIELD COVER	28480 28480 28480 28480 28480	2110-0269 94276-01204 04276-00613 04276-00614 04276-00615	
	04276-00616 04276-01206 04276-26504	1	1	SHIELD COVER ANGLE (BOARD) PC BOARD, BLANK	28480 28480 28480	04276-00616 04276-01206 04276-26504	
		,					
		ļ		<u> </u>			
				-			
					:		
					ŀ		
		1	1		1	1	

Table 6-3. Replaceable Parts

				Table b-3. Replaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
ASR6 ASR7	0483-4725 0583-4725	2	٦	RESISTOR 4.7M 50° 25W FC TC=-4007+700 RESISTOR 4.7M 50° 25W FC TC=-4007+700	01121 01121	CB4725 CB4725
A551 A552 A553 A554 A555	5250-9436 5660-9436 5660-9436 5660-9436 5860-9436	7777	17	PUSHEUTION SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHEUTION SWITCH P.C. HOUNT	28480 28480 28480 28480 28480	5360-9436 5060-9435 5360-9435 5060-9435 5063-9436
A586 A587 A588 A589 A5810	5060-9436 5080-9436 5060-9436 5060-9436 3101-2046	7 7 7 7	2	PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. HOUNT PUSHBUTTON SWITCH P.C. HOUNT SWITCH-SLIDE DPDT-NS	28480 29480 29480 28480 28400	5060-9436 5050-9436 5060-9435 5060-9436 3101-2646
A5511 A5512 A5513 A5514 A5515	37 -1 -2 5 50 3191-1074 3191-1074 3191-2046 - 5960-9436 5960-9436	9 7 7 7	5	SWITCH-PUSHBUTTON SPST NO SWITCH-PUSHBUTTON SPST NO SWITCH-SLIDE TPDT-NS PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. FOUNT	28480 28480 20483 20480 20480	3101-1074 3101-1074 3101-2146 5066-9436 5060-9436
A5516 A5517 A5518 A5519 A5520	5260-9436 5860-9436 5060-9436 5160-9436 5260-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MCUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	50&C-9435 53&3-9436 50&0-9436 50&0-9436 50&0-9436
A5521	5960-9436	7		PUSHEUTTON SWITCH P.C. MAUNT	28480	5060-9436
A5U1 A5U2 A5U3 A5U4 A5U5	1858-0038 1820-0495 1820-1624 1820-1624 1830-1624	4 8 7 7 4	4 1 2	TRANSISTOR APRAY IC DCDR TIL 4-TO-16-LINE 4-INP IC BFR TIL S OCTL 1-INP IC EFR TIL S OCTL 1-INP TPANSISTOR APRAY	28480 01295 01295 01295 28480	1859-0139 SN74154N SN745241N SN745241N 1850-0138
A5U6 A5U7 A5U8 A5U9	1858-0038 1858-0038 1320-1216 1816-1533	4 4 3 8	1 1	TRANSISTOR ARRAY TRANSISTOR ARRAY IC DOOR TIL LS 3-TO-B-LIME 3-IMP IC-MB7051	28480 28480 01295 28480	1858-0078 1859-0138 5N74LS138N LR16-1533
	0360-1901 1230-0638 5041-0309 5841-0318 5041-0375	67565	2 14 3 3	MISCELLANEOUS PARTS CABLE TRANSISTION SOCKCT—IC 14—CONT DIP DIP—SLDR KEY CAP KEY CAP KEY CAP KEY CAP KEY CAP KEY CAP—QUAPTER (SMOKE)	28480 28480 28480 28480 28480	0350-1901 1200-0638 5041-0309 5041-0318 5041-0375
	5941-0384 5041-0922 04171-40002 5040-3327 04274-40003	5	2 8 1 6 3	KEY CAP-QUARTER (SMOKE GRAF) KEY CAP-QUARTER (EBY-PEARL) INSULATOR INSULATOR INSULATOR	28400 28480 28480 28480 28480	5041-0384 5041-0922 04191-0902 5040-3327 04274-49003
	04276-61641 04276-26505	9	1 1	CABLE ASSEMBLY-FLAT PC BOARD, BLANK	28490 28480	04276-61641 04276-25505
į			;			

SECTION VI PCO 17003 (Xトリックネジ)

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts			
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	
\$741-5719 1 81/5-133 2 81/5-1331 4 85/3-1331	5040-7219 2680-0172- 5060-9803 2510-0192 5020-8836		2 4 2 16 4	STPAP HANDLE CAP (FPONT) SCREW STPAP HANDLE SCREW- STPUT			
5 502/ - 5731 6 7 452 113 9 4 52 113 10 1	04276-01202 04274-40002 5060-9941 * 5040-7220 04276-01201		1 3 2 2	ANGLE (POWER SWITCH) GUIDE (ANGLE) SIDE COVER STEAP HANDLE CAP (PEAP) ANGLE			
11 12 13 14	3101-2216 0515-0150 3050-0235 9135-0084 1400-0866		1 2 2 1 1	LINE SWITCH SCREW WASHER LINE FILTER CABLE CLAMP			
16 17 18 19 20	2110-0360 2100-0007 2110-0565 04276-00603 04276-66521 04276-00602		1 1 2 1 1	FUSE .75A 250V (220/240V) SLOW BLOW FUSE 1A 250V (100/120V) SLOW BLOW FUSEHOLDER CAP BLANK PANEL (COMPARATOR/HANDLER INTERFACE) HP-1B BOARD ASSEMBLY BLANK PANEL (INTERNAL DC BIAS)			
21 22 23 24 25	2360-0113 04276-04001 1250-0118 2200-0105 6960-0001		10 1 2 4	SCREW FAN COVER CONNECTOR-BNC SCREW CAP			
26 27 28 29 30	3160-0266 2110-0011 2110-0564 2260-0009 0360-1190		1 1 2 4 1	FAN FUSE 1/16A 25OV FUSEHOLDER BODY NUT SOLDER TERMINAL			
31 32 33 34 35	2190-0016 2950-0001 04277-00204 2110-0569 3101-1877		3 2 1 2 1	WASHER NUT REAR PANEL FUSEHOLDER NUT SLIDE SWITCH			
36 (37) - 1 - 1 - 5 (37) (37) (37) (37) (37) (37) (37) (37)	2360-0113 50 20-8806 5060-9834 04276-00102 04276-00103		8 1 1 1	SCREW REAP FRAME TOP COVER CHASSIS (YELLOW) CHASSIS (PED)			
41 42 2575 - 1257 43 5071 - 5752 440 5775 - 7, 709	04276-00101 2 360-013 3 5 020-880 5 84275-00203 04276-25001	,	1 6 1 1 3	CHASSIS (BPOWN) SCREW FRONT FRAME SUB PANEL WINDOW			
46 47 48 49 50	04277-00201 04277-00202 7120-1254 7120-0478 2950-0035 5040-3324 1510-0038		1 1 1 1 4 4	FRONT PANEL (HP) FRONT PANEL (YHP) NAME PLATE (HP) NAME PLATE (YHP) NUT INSULATOP-BNC BINDING POST			
51 52 53 54 55	04191-4000 5040-3325 2190-0084 5000-4212 2950-0006	1	4 1 4	GUIDE INSULATOR-BNC WASHER SOLDER TERMINAL NUT			
56 57 58 59 60 550 1	2190-0054 1250-0252 1460-1345 5646-7201 5060-9846	- (4 4 2 4 1	WASHER CONNECTOR-BNC STAND FOOT (DOTTOM) BOTTOM COVER			
61 62 63 64 65	5041-0564 04274-4000 1901-1065 0140-0200 0160-2230		1 1 4 2 1	KEY CAP ROD (POWEP SWITCH) DIODE CAPACITOR 390pF CAPACITOR 3300pF			
66 67 68 69	1902-0657 0764-0016 0683-2245 0698-3634		4 1 1	DIODE RESISTOR 140 RESISTOR 220k0 RESISTOR 4700			

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts							
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	
1 2 3 4 5	5040-7219 2680-0172 5060-9803 2510-0192 5020-8836		2 4 2 16 4	STRAP HANDLE CAP (FRONT) SCREW STRAP HANDLE SCREW STRUT			
6 7 8 9	04276-01202 04274-40002 5060-9941 5040-7220 04276-01201		1 3 2 2 1	ANGLE (POWER SWITCH) GUIDE (ANGLE) SIDE COVER STRAP HANDLE CAP (REAR) ANGLE			
11 12 13 14	3101-2216 0515-0150 3050-0235 9135-0084 1400-0866		1 2 2 1	LINE SWITCH SCPEN WASHER LINE FILTER CABLE CLAMP			
16 17 18 19 20	2110-0360 2100-0007 2110-0565 04276-00603 04276-66521 04276-00602		1 1 2 1 1	FUSE .75A 250V (220/240V) SLOW BLOW FUSE IA 250V (100/120V) SLOW BLOW FUSTHOLDER CAP BLANK PANEL (COMPANATOR/HANDLER INTERFACE) HP-IB BOARD ASSEMBLY BLANK PANEL (INTERNAL DC BIAS)			
21 22 23 24 25	2360-0113 04276-04001 1250-0118 2200-0105 6960-0001		10 1 2 4 1	SCPEW FAN COVEP CONNECTOR-BNC SCREW CAP			
26 27 28 29 30	3160-0266 2110-0011 2110-0564 2260-0009 0360-1190		1 1 2 4 1	FAN FUSE 1/16A 25OV FUSEHOLDER BODY NUT SOLDER TERMINAL			
31 32 33 34 35	2190-0016 2950-0001 04277-00204 2110-0569 3101-1877] 2 1 2	WASHER NUT REAP PANEL FUSEHOLDER NUT SLIDE SWITCH			
36 37 38 39 40	2360-0113 5020-8806 5060-9834 04276-00102 04276-00103		8 1 1 1	SCPEW REAR FRAME TOP COVER CHASSIS (YELLOW) CHASSIS (PED)			
41 42 43 44 45	04276-00101 2360-0333 5020-8805 04276-00203 04276-25001		 6 3	CHASSIS (BROWN) SCREW FRONT FRAME SUB PANEL WINDOW			
46 47 48 49 50	04277-00201 04277-00202 7120-1254 7120-0478 2950-0035 5040-3324 1510- 0018		1 1 1 1 4 4	FRONT PANEL (HP) FRONT PANEL (YHP) NAME PLATE (HP) HAME PLATE (YHP) NUT INSULATOR-BNC BINDING POST			
51 52 53 54 55	04194-40001 5040-3325 2190-0084 5000-4212 2950-0006		1 4 1 4	GUIDE INSULATOR-BNC WASHER SOLDER TEPMINAL NUT			
56 57 58 59 60	2190-0054 1250-0252 1460-1345 5040-7201 5060-9846		4 4 2 4 1	WASHER CONNECTOR-BNC STAND FOOT (BOTTOM) BOTTOM COVER			
61 62 63 64 65	5041-0564 04274-40001 1901-1065 0140-0200 0160-2230		1 1 4 2 1	PET CAP POD (POWER SWITCH) DIODE CAPACITOR 390pF CAPACITOR 3300pF			
66 67 68 69	1902-0657 0764-0016 0683-2245 0698-3634		1 1	DIQUE RESISTOR 1kg PESISTOR 220kg RESISTOR 4700			

8-42. AUTO-BALANCE BRIDGE

8-43. The auto-balance bridge consists of the unknown sample, a range resistor, the Null Detector and the Modulator. Figure 8-11 shows the block diagram of the auto-balance bridge.

8-44. NULL DETECTOR

8-45. The unbalance current which results when the bridge is not completely balanced is detected by an I-V converter (in the null detector) through the LPOT terminal and is converted into a vector voltage signal. To improve gain at high frequencies, the I-V converter employs a staggered circuit configuration. Because the I-V converter's feedback magnitude varies depending on the DUT impedance, the feedback circuit elements are automatically changed in response to selection of measurement range (test frequency and range resistor). Refer to Figure 8-12.

8-46. The Gain Normalizer Amplifier and the x100 Amplifier amplify the unbalance vector voltage signal in order to maintain the sensitivity of the balance control loop (the Null

+/1E

Detector and the Modulator circuits) almost constant against changes in the test signal level and DUT impedance. In input stage of the Modulator Amplifier, the signal is attenuated to compensate for the gain of the Gain Normalizer Amplifier stage. The microprocessor does this by setting the SPAM and TLPAM control signals to suit the test signal and measurement conditions. Figure 8-13 shows the SPAM and TLPAM control settings.

8-47. MODULATOR

8-48. Figure 8-11 shows the basic circuit configuration of the Modulator. The unbalance vector signal which is detected by the Null Detector is phase detected and separated into its orthogonal vector components. detectors output dc voltages proportional to the of the respective magnitudes Reverse-phase components yield components. reverse-polarity voltage outputs (negative de levels) from the phase detectors. The vector modulators vary the amplitudes of the four orthogonal phase vector signals (0°, 90°, 180°, -90°), which are generated by the low-pass filter in the signal source and the phase tracking

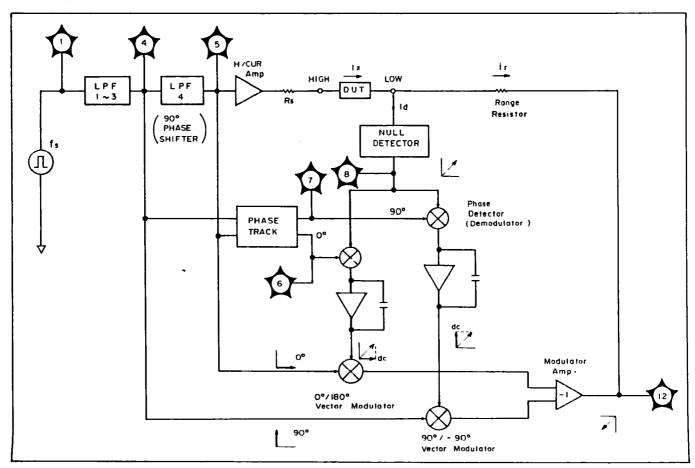


Figure 8-11. Auto-Balance Bridge Block Diagram.

circuits, in response to the null detector output components. The 0°/180° vector modulator provides an amplitude-controlled output which is in-phase with the test signal when the 0° phase detector output is a positive voltage. Conversely, it provides a reverse phase output for a negative voltage output from the phase detector. Thus, the 0°/180° vector modulator's output signal is represented by a vector on the real axis of the coordinates shown in Figure 8-14. The 90 $^{\circ}/-90$ $^{\circ}$ vector modulator operates similarly to the 0 $^{\circ}/180$ $^{\circ}$ vector modulator with respect to the 90° phase shifted input signal. The 90°/-90° vector modulator output signal is represented by a vector on the imaginary axis (see Figure 8-14). As a result of this vector modulation, the magnitudes of the real and imaginary vector components of the null output are transferred orthogonal vectors of the vector modulator outputs. The modulator amplifier sums the signals output from the 0 $^{\circ}/180$ $^{\circ}$ and 90 $^{\circ}/-90$ $^{\circ}$ vector modulators and, simultaneously, reverses the phase of the resultant vector signal (the modulator amplifier provides 180 ° phase shift). Consequentially, the modulator amplifier output. **e**d, has a vector direction opposite that of the unbalance current. The ed signal changes in response to the unbalance current so as to suppress increases in the unbalance current. Thus, the unbalance current approaches zero. Because the ed signal is controlled with respect to the individual magnitudes of the real and imaginary components of the unbalance current, the bridge can reach accurate balance even if the balance control loop has a phase error related to test signal.

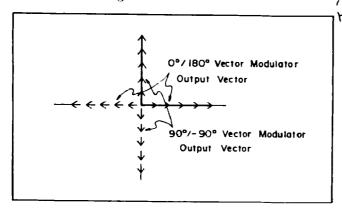


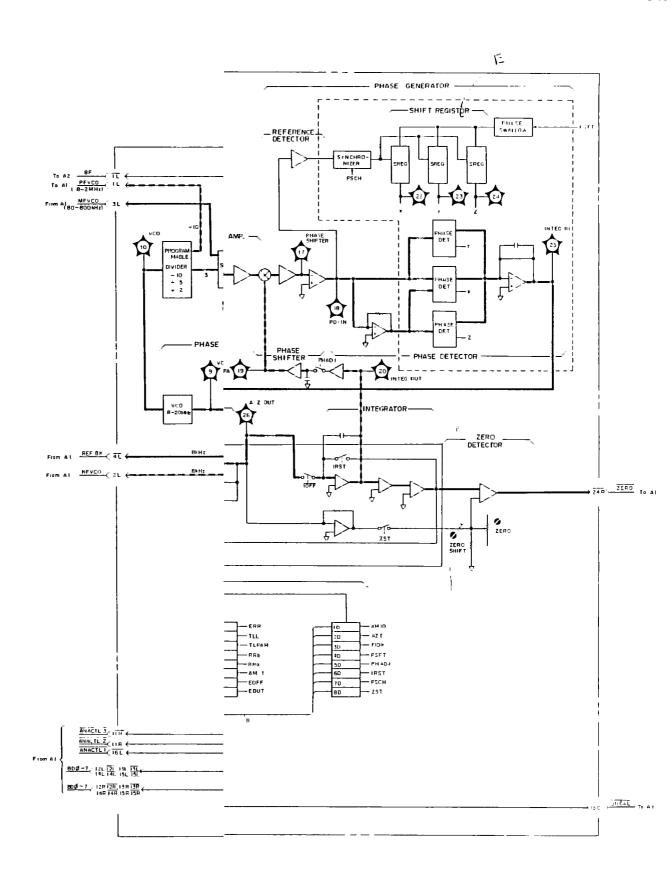
Figure 8-14. Vector Representation of the Vector Modulator Outputs.

8-49. PHASE TRACKING CIRCUITS OF THE BRIDGE CONTROL LOOP

8-50. If the phase shift in the balance control loop is so large that the bridge cannot be automatically balanced, the phase characteristics of the balance control loop can be compensated by properly adjusting the phase of the 0° and 90° reference phase signals used by the phase detectors in reference to the test signal.

The output from the third stage of the low-pass filter in the signal source is used as the 90° reference phase signal. The output from the fourth stage of the low-pass filter is used as the 0° reference phase signal. The fourth stage of the low-pass filter functions as a 90° phase shifter. Depending on the frequency of the test signal, the input vs. output phase lag is between -105° and -85°. Thus, the 0° and 90° reference phase signals do not always maintain a precise 90° phase relationship. This does not, however, affect the detection of the unbalance current.

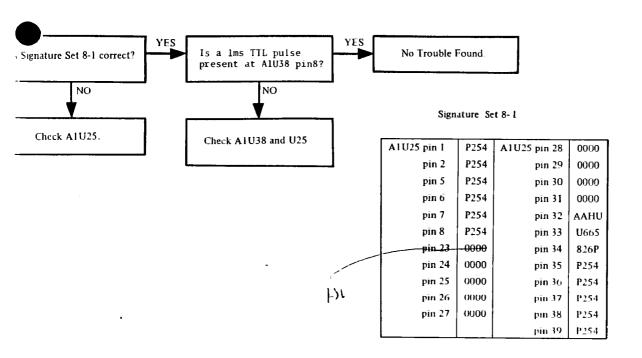
The phase tracking circuits shift the phase relationship of the reference phase signals as appropriate for the selected test frequency without changing the signal amplitude and thereby ensure the bridge being automatically balanced over the entire test frequency range.

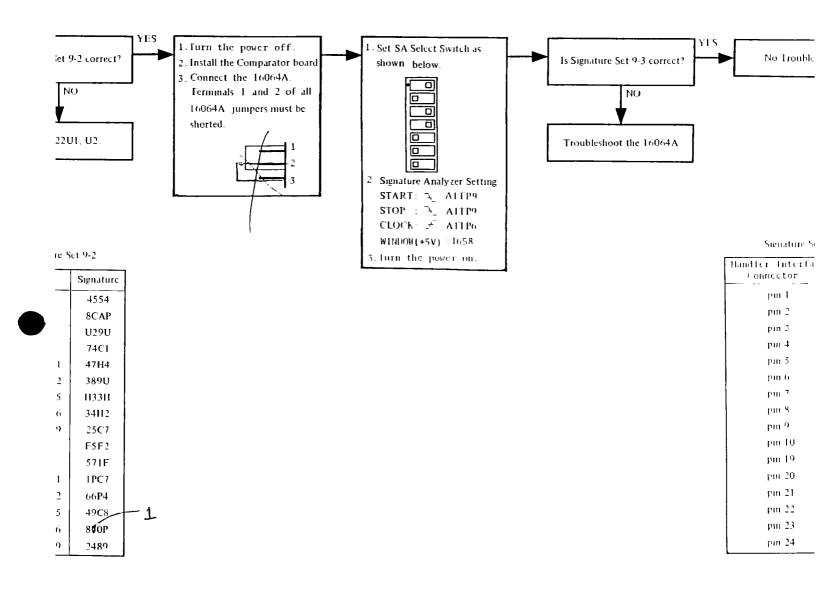

8-51. RANGE RESISTOR

8-52. The values of the range resistors used in the auto-balance bridge are 100Ω , $1k\Omega$ and $10k\Omega$. To ensure accurate range resistor values and minimum residual reactance (mainly stray capacitance), $\overline{a}\overline{a}$ potentiometer and a phase compensation trimmer capacitor are provided for each range resistor. Range resistor selection and CMR Amplifier switching is controlled by the RRa and RRb control signals. Refer to Table 8-5.

Table 8-5. Range Resistor Selection

Range	Control Signals					
Resistor	PPa	RRb				
100Ω	LOW	LOW				
$1 \mathrm{k}\Omega$	HIGH	LOW				
10kΩ	LOW	HIGH				


8-53. The CMR (Common Mode Rejection) amplifier provides compensation for any decrease in the range resistor signal caused by the inherent impedance of the internal cabling from the Lour terminal to the range resistor.


ı Block Diagram.

١

Check A1U20.

LOGIC Board Troubleshooting Flow Diagram (Sheet 6 of 7).

LOGIC Board Troubleshooting Flow Diagram (Sheet 7 of 7).

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6		П				
A6	N4276-665N6	5	1	MOTHER BOARD ASSEMBLY	28480	04276-66506
A68T1 🔀	-1430 -0306	2	1	BATTERY- 2.4V	28480	1420-0306
A6J2 A6J4	1251-7845 1251-5382 1251-0541	9 5 8	1 1 1	CONNECTOR- 6 PIN, MALE CONNECTOR 4-PIN M METRIC POST TYPE CONNECTOR 34-PIN M RECTANGULAR	28480 28480 28480	1251-7845 1251-5382 1251-0541
A6UI	1813-0304	3	1	IC (MISC) SIP	28480	1813-0304
A6XA1L A6XA1R A6XA2C A6XA2L A6XA2R	1251 - 2582 1 251 - 2582 1 251 - 2026 1 251 - 2582 1 251 - 2582	1 1 B 1	5	CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS	28480 28480 28480 28480 28480 28480	1251-2582 1251-2582 1751-2026 1251-2582 1251-2582
A6XA4C A6XA4R A6XA21 A6XA22 A6XA23	1251-2026 1251-2582 1251-4978 1251-4978 1251-4978	8 1 3 3	3	CONNECTOR-PC EDGE 18-CONT/POW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS	28480 28480 05574 05574 05574	1251-2026 1251-2582 000231-3944 000231-3944 000231-3944
				MISCELLANEOUS PARTS		
	0360-1244 04276-26506	٥	4 1	TERMINAL-STUD SPCL-FDTHRU PRESS-MTG PC BOARD, BLANK	28480 28480	0350-1244 04276-26506
	1420-0362			Vi- Ex Battery (MKIG)		
	1400-0757			Vi- Ex Battery Prottery Claure 4-32 大橋		
				SVC Note 4277A-09 or FCD- 23985		
A 2 1						
A21	04276-66521	4	1	HP-IB BOARD ASSEMBLY	28480	04276-66521
A21C1 A21C2	0180-2981 0180-1085	2 5	1	CAPACITOR-FXD 220UF+-20% 18VDC AL CAPACITOR-FXD 4.7UF 16VDC TA	28480 28480	0180-2981 0180-1085
A21J1 A21J2	1200-0485 1200-0654	2 7	1 1	SOCKET-IC 14-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR	28480 28480	1200-0485 t200-0654
A21R1 A21R2 A21R3 A21R4	1910-0305 0683-4725 0683-4725 0683-4725	8 2 2	1 3	NETWORK-PES 9-SIP4.7k OHM x 8 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700	28480 01121 01121 01121	1810-0305 CB4725 CB4725 CB4725
A2151	3101-1973	7	1	SWITCH-SL 7-1A DIP-SLIDE-ASSY .1A 50VDC	28480	3101-1973
A21U1 A21U2 A21U3 A21U4 A21U5	1820-2024 1820-2058 1820-2058 1820-2549 1820-1199	3 3 7 1	1 4 1 1	IC DRVR TTL LS LINE DRVR OCTL IC MISC TTL S QUAD IC MISC TTL S QUAD IC-8291A P HPIB IC INV TTL LS MEX 1-INP	01295 07263 07263 28400 01295	SN74L5244N MC344BAL MC344BAL 1820-2549 SN74L504N
A2106 A2107 A2108	1820-2058 1820-2058 1820-2075	3 3 4	1	IC MISC TTL S QUAD IC MISC TTL S QUAD IC MISC TTL LS	07263 07263 01295	MC3448AL MC3448AL SN74LS245N
A21W1	0159-0005	0	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480	8159-0005
	2360-0113 04276-00604 04276-61661 04276-26521		2 1 1	SCREW-HACH 6-32 .25-IN-LG PAN-HD-POZI PLATE (HP-IB) CABLE ASSEMBLY PC BOARD, BLANK	## 000 29480 28480 28480 28480	ORDER BY DESCRIPTION 04276-00604 04276-61661 04276-26521

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A 1	04277-66501	1	1	LCGIC EDARD ASSEMBLY	28480	04277-66501
A1C1 A1C2 A1C3 A1C4 A1C5	0180-1085 0180-1065 0180-1085 0180-1085 0180-1085	55555	13	CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITUR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA	28480 28480 28480 28400 28480	01R0-1085 0180-1085 0180-1085 0180-1085 0180-1085
A1C6 A1C7 A1C8 A1C9 A1C10	0180-1085 0180-1085 0180-0197 0160-4832 0180-3219	5 B 4 1	1 2 1	CAPACITOR-F#D 4.7UF 16VDC TA CAPACITOR-F#D 4.7UF 16VDC TA CAPACITOR-F#D 2.2UF+-10% 70VDC TA CAPACITOR-F#D .01UF +-10% 100VDC CEP CAPACITOR-F#D 2200UF +-20% 6 3VDC AL	28480 78480 56289 20480 79480	0180-1085 0180-1085 1500225X9020A2 0160-4832 0180-3219
A1CI1 A1CI2 A1CI3 A1CI4 A1CI5	0160-4801 0160-1005 0180-1085 0180-1085 0180-2751	7 5 5 5	1	CAPACITOR-FXD 180PF +-5% 100VDC CER CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 33UF+-20% 16VDC AL	28480 28480 28480 20480 28480	0160-4801 0180-1385 0180-1085 3180-1385 0180-2751
A1Cl6 A1Cl7 A1Cl8 A1Cl9 A1C20	0100-1005 0180-1005 0180-1005 0160-4832 0180-3217	55549	a	CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD 4.7UF 16VDC TA CAPACITOR-FXD .01UF +-10% 188VDC CEF CAPACITOR-FXD 478UF	28480 28480 28480 28480 28480	0180-1985 0186-1985 0180-1005 0164-4832 0180-3217
A1C21	0180-3717	9		CAPACITOR-FXD 478UF	28480	0186-3217
A1CR1 A1CR2	1901-0539 1901-0539	3	5	DIODE-SH SIG SCHOTTKY DIODE-SH SIG SCHOTTKY	28480 28480	1901-0539 1901-0539
A1J1 A1J2 A1J3 A1J10	1200-0607 1200-0607 1200-0654 1200-0541	0 7 1	2	SCCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SCCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR	28480 28480 28480 28480	1200-0607 1280-0607 1200-0654 1200-0541
A1J11 A1J12 A1J13 A1J14	1200-0541 1200-0541 1200-0541 1200-0654	1 1 1 7		SCEKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR	28480 28480 28480 28480	1208-0541 1200-0541 1200-0541 1208-0654
A1Q1 A1Q2 A1Q3 A1Q4 A1Q5 MKTG	1854-0810 1054-0810 1053-0281 1854-0810 1853-0015	2 9 2 7	3 1 1	TRANSISTOR NPN SI PD=525MW FT=200MHZ TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR PNP 2NT907A SI TO-18 PD=400MW TRANSISTOR NPN SI PD=625MW FT=200MHZ TRANSISTOR PNP SI PD=200MW FT=500MHZ	28480 28480 94713 28480 28480	1654-0010 1854-0810 2N2907A 1854-0810 1853-0015
A1R1 A1R2 A1R3 A1R4 A1R5	1010-0488 0757-0199 2100-3103 0757-0440 0683-2215	8 3 6 7 1	1 1 1 1	NETWORK-RES 8-SIP4.7K OHM x 4 RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOP-TRHR 10K 10% C SIDE-ADJ 17-TRN RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 220 5% .25W FC TC=-480/+600	28480 24546 02111 24546 01121	1810-0488 C4-1/8-T0-2152-F 439103 C4-1/8-T0-7501-F C87215
A1R6 0777-7200 A1R7 A1R8 110 23 155 A1R101 556	0683-4715 1810-0607 0683-1045 0683-2245 0683-1005	0 3 3 7 5	1 1 1 1	RESISTOR 470 5% .25W FC TC=-400/+600 RESISTIVE NETWORK- SIP RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 220K 5% .25W FC TC=-800/+900 RESISTOR 10 5% .25W FC TC=-400/+500	81121 28480 01121 01121 01121	CB4715 1810-0607 CB1045 CB2245 CB1035
A1R11 (277) 67 A1R12 A1R13 A1R14 A1R15 A1R16	0683-0565 0683-0565 9693-1075 1810-0305 1810-0305	9 9 9 9 8 8	2 1 1 5	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 56 5% .25W FC TC=-400/+500 RESISTOR 5.6 5% .25W FC TC=-400/+500 RESISTOR 1K 5% .25W FC TC=-400/+600 NETWORK-RES 9-SIP 4 7K OHM X8	01121 01121 01121 01121 28480 28480	CD1025 CB5605 CB0565 CB1025 1810-0305 1810-0305
AIRIB AIRI9 AIR20 AIR21 AIR22 AIR23	1810-0267 1810-0305 1810-0305 1810-0305 0643-4725 0643-4725 0643-4725	222888	1	NETWORK-RES 9-SIP10.0K OHM X 8 NETWORK-RES 9-SIP 4 7k OHM X 8 NETWORK-RES 9-SIP 4 7k OHM X 8 NETWORK-RES 9-SIP 4 7k OHM X 8 RESISTOR 4 7K 5% 25W FC TC=-400/+700	28480 28480 28480 28480 01121 01121	1010-0269 1810-0305 1810-0305 1810-0305 CB4725 CB4725 CB4725
A1R24 A1R25 A1R26	0683-3325 0683-6025 0683-4725	6 7 2	1	RESISTOR 3.3K 5% 25W FC TC=-400/+700 RESISTOR 6.8K 54 ,25W FC TC=-400/+700 RESISTOR 4.7K 5% ,25W FC TC=-400/+700	01121 01121 01121	CB3725 CB6025 CB4725
A1827 A181	0693-4725 3101-1973	7	t	RESISTOR 4 7K 5% 25W FC TC=-4007+700 SWITCH-SL 7-1A DIP SLIDE ASSY .1A SOUDC	01121 28490	Ch4725 3101-1973

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A4						
A4	04277-66504	4	1	POWER SUPPLY BOARD ASSEMBLY	28480	04277-66504
A401 A402 A403 A404 A405	0180-1075 0180-1075 0180-1075 0180-2980 0180-2980	3 1 1	5	CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL CAPACITOR-FXD 1000UF+-20% 35VDC AL	28480 28480 28480 28480 28480 28480	0133-1075 0130-1075 0130-1075 0130-2930 0130-2930
A465 A467 A468 A469 A4610	0180-1075 0180-3221 0180-3221 0180-3221 0180-3221	おからから	6	CAPACITOR-FXD 2700 UF 16VDC AL. CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC	28480 28480 28480 28480 28480	0180-1075 0180-3221 018C-3221 018C-3221 018C-3221
A4C11 A4C12 A4C13 A4C14 A4C15	0180-1050 0180-1050 0180-3221 0180-3221 7180-1050	44554	5	CAPACITOR-FXD 100UF 25UDC CAPACITOR-FXD 100UF 25UDC CAPACITOR-FXD 10 UF 100UDC CAPACITOR-FXD 10 UF 100UDC CAPACITOR-FXD 100UF 25UDC	28480 28480 28480 28480 28480	0180-1050 0180-1050 0180-3221 0180-3221 0180-1050
A4C16 A4C17 A4C18 A4C19 A4C20	0180-1050 0180-1050 0160-4297 0180-1075 0160-3456	4 4 5 3 6	1	CAPACITOR-FXD 108UF 25VDC CAPACITOR-FXD 108UF 25VDC CAPACITOR-FXD 822UF +80-20% 108VDC CER CAPACITOR-FXD 2200 UF 10VDC AL CAPACITOR-FXD 1880PF +-10% KVDC CER	28480 28480 56289 28480 28480	0180-1050 0180-1050 C023F101H2237522-CDH 0180-1075 0160-3456
A4C21 A4C22 A4C23 A4C24 A4C25 , MICTG	0180-0197 0160-4822 0100-0291 0160-3094 0180-1704	82785	1 1 1 1	CAPACITOR-FXD 2 2UF+-10% 20VDC TA CAPACITOR-FXD 1000PF +-5% 100VDC GER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF +-10% 100VDC CER CAPACITOR-FXD 47UF+-10% 6VDC TA	55287 28480 55289 28480 55287	150D225×9020A2 0160-4822 150D105×9035A2 0160-3094 150D476×900682
A4C26 A4C27 A4C28 A4C29 A4C30	0180-0228 0160-0127 0160-0127 0160-4593 0160-0127	60040	2 3 2	CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CCR CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1 5UF +-20% 400VDC CAPACITOR-FXD 1UF +-20% 25VDC CER	55289 20480 28480 28480 28480	150D226×9015B2 0160-0127 0160-0127 0160-4593 0160-0127
A4C31 A4C32 A4C33 A4C34 A4C35	0180 -1746 0160-4593 0180-3234 0180-3231	5 4 7 7 7	1	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 1 5UF+-20% 400VDC CAPACITOR-FXD 4-7 UF 450VDC CAPACITOR-FXD 4-7 UF 450VDC CAPACITOR-FXD 4-7 UF 450VDC	56289 20480 23480 28480 28480	150D156x902682 0160-4593 0100-3231 0100-3231 0180-3231
A4E36 A4E37 A4E38 A4E39 A4E40	0180-3231 0180-3253 0180-3253 0160-3969 0160-3969	7 7 6 6	2	CAPACITOR-F×D 4 7 UF 450VDC CAPACITOR- F×D 470 UF 200VDC CAPACITOR- F×D 470 UF 200VDC CAPACITOR-F×D .015UF +-20PF 250VAC(RMS) CAPACITOR-F×D .015UF +-20PF 250VAC(RMS)	28490 28480 28480 20480 20480 28480	0180-3231 0180-3253 0180-3253 3160-3969 0160-3969
A4C41	0180-0228	6		CAPACITOR-F×D 22UF+-10% 15VDC TA	56289	150D226×9015B2
A4CR1 A4CR2 A4CR3 A4CR4 A4CR5	1902-1217 1902-3218 1902-3208 1902-3234 1902-3234	8 1 1 3	1 2 2	DIODE-ZNR 6.2V 52 DO-4 PD=10W TC=+ 0352 DIODE-ZNR 15 4V 52 DO-35 PD= 4W TC=+.062 DIODE-ZNR 15.4V 52 DO-35 PD=.4W TC=+.062 DIODE-ZNR 19.6V 52 DO-35 PD=.4W DIODE-ZNR 19.6V 52 DO-35 PD=.4W	20480 20480 20480 20480 28480 28480	1702-1217 1702-3208 1702-3200 1702-3234 1702-3234
A4CR6 A4CR7 A4CR8 A4CR9 A4CR10	1901-0025 1901-0025 1901-0025 1901-0025 1901-0691	2 2 2 3		DIODE-GEN PRP 1000 200HA DD-7 DIODE-GEN PRP 1000 200HA DD-7 DIODE-GEN PRP 1000 200HA DO-7 DIODE-GEN PRP 1000 200HA DO-7 DIODE-PWR REGT 1000 3A 200NS	28480 28480 20480 28480 03508	1701-0025 1901-0025 1901-0025 1701-0025 A115A
A4CR11 A4CR12 A4CR13 A4CF14 A4CF15	1901-0591 1901-0591 1901-0591 1901-0591 1901-0591	8 6 6 6		DIODE-PWR RECT 1000 3A 200NS DIODE-PWR RECT 1000 3A 200NS DIODE-PWR RECT 1000 3A 200NS DIODE-PWR RECT 1000 3A 200NS DIODE-PWR RECT 1000 3A 200NS	03508 03508 03508 03508 03508	A115A A115A A115A A115A
A4CR15 A4CR17 A4CR18 A4CR19 A4CR20	1 401 -0691 1901 -0691 1401 -0691 1901 -0691 1901 -0969	B D B		DIODE-PUR RECT 100V 3A 200NS DIODE-PUR PECT 100V 3A 200NS DIODE-PUR RECT 100V 3A 200NS DIODE-PUR RECT 100V 3A 200NS DIODE-POWER RECT	03508 03508 03508 03508 28480	A115A A115A A115A A115A 1901-0969
H4CR21 H4CR22 H4CR23 H4CR24 H4CR25	1901-0969 1902-3102 1901-0025 1901-0025 1902-3203	3 0 2 7 6		DIONE-POWER RECT DIONE-ZHR 12.19 5% DO-35 PD= 4W DIONE-GEN PPP 10NV 200HA DO-7 DIONE-GEN PPP 10NV 200HA DO-7 DIONE-ZHR 14.7V 5% DO-35 PD= 4W	28480 28480 28480 28480 28480	1701-0767 1702-3182 1701-0025 1701-0025 1702-3203
114 CH 26 A 4 CH 27 A 4 CH 20 A 4 CH 29 A 4 CH 29 A 4 CH 30	1901-0025 1901-0025 1902-0555 1901-0025 1931-0025	25.55		DIODF-GEN PRP 1880 2004A DO-7 DIODF-GEN PRP 1880 2004A DO-7 DIODE-ZNR 13V 5% PD=1V IR=SUA DIODE-GEN PRP 188V 2004A DO-7 DIODE-GEN PRP 188V 2004A DO-7	28480 28480 20483 28480 28480	1701-0025 1201-0025 1202-0555 1701-0025 1701-0025

See introduction to this section for ordering information *Indicates factory selected value

Table 6-3. Replaceable Parts

	-					
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A4						
A4	0 4277-6650 4	4	1	POWER SUPPLY BOARD ASSEMBLY	28480	04277-66504
A4C1 A4C2 A4C3 A4C4 A4C5	0180-1075 0180-1075 0180-1075 0180-27807 0180-29803	3 	0180-	32725 -20% 35VDC AL	78480 28480 28480 20480 28480	0180-1075 0180-1075 0180-1075 0180-2980 0180-2980
A4C6 A4C7 A4C8 A4C9 A4C10	0180-1075 0100 3221 0180-3221 0180-3221 0180-3221	5 5 5	0180· 	- 3587 16VDC AL. 00VEC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC	28480 28480 28480 28480 28480	0100-1075 0180-3221 0180-3221 0180-3221 0180-3221
A4C11 A4C12 A4C13 A4C14 A4C15	0180 1850 0180-1850 0180-3221 0180-3221 9180-1050	4455	5	CAPACITOR-FXD 100UF 25VDC CAPACITOR-FXD 100UF 25VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 10 UF 100VDC CAPACITOR-FXD 100UF 25VDC	28480 28480 28480 28480 28480	0180-1050 0180 1050 0180-3221 0180-3221 0180-1050
A4C16 A4C17 A4C18 A4C19 A4C20	0180-1050 0180-1050 0160-4297 0180-1075 0160-3456	4 4 5 5 6	l l	CAPACITOR-FXD 100UF 25VDC CAPACITOR FXD 100UF 75VDC CAPACITOR-FXD .022UF +00-20% 100VDC CER CAPACITOR-FXD 2200 UF 16VDC AL CAPACITOR-FXD 1000PF +-10% 1KVDC CER	28480 28480 57289 28480 28480	0180-1050 0180-1950 C023F101H223Z522-CDH D180-1075 0160-3456
A4C21 A4C22 H4C23 A4C24 H4C25	0180-0197 0160-4H22 01R0-0291 0160-3U94 0180-1704	823.85	1 1 1 1	CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF+-10% 100VDC CER CAPACITOR-FXD 42UF+-10% 6VDC TA	56289 28480 56259 28480 56289	150D225X9020A2 0160-4822 150D105x9035A2 0160-30Y4 150D476X9006B2
A 4C26 A4C27 A4C28 A4C29 A4C30	011)0-022B 0160-0127 0160-0127 0160-0127 0160-4593 0160-0127	62242	2 3 2	CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1.5UF +-20% 400VDC CAPACITOR-FXD 1UF +-20% 25VDC CER	56289 28488 28488 28480 28480	150D226X9015B2 0160 0127 0160-0127 0160-4593 0160-0127
A4C31 A4C32 A4C33 A4C34 A4C35	0180 1746 0160-4593 0160-3231 0180-3231 0180-3231	5 4 7 7 7	4	CAPACITOR FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 1.5UF +-20% 400VDC CAPACITOR-FXD 4.7 UF 450VDC CAPACITOR-FXD 4.7 UF 450VDC CAPACITOR-FXD 4.7 UF 450VDC	56289 28480 29480 28480 28480	150D156×902092 0160-4593 0180-3231 0180-3231 0180-3231
A4C36 A4C37 A4C38 A4C39 A4C40	0180-3231 0180-3253 0180-3253 0180-3253 0160-3969	77766	2	CAPACITOR-FXD 4.7 UF 450VDC FAPACITOR- FXD 470 UF 200VDC CAPACITOR- FXD 470 UF 200VDC CAPACITOR-FXD .015UF +-20PF 250VAC(RMS) CAPACITOR-FXD .015UF +-20PF 250VAC(RMS)	28480 28480 28480 28480 28480	0180-3231 0180-3253 0180-3253 0160-3969 0160-3969
A4C41	0180-0228	6		CAPACITOR-FXD 22UF4-10% 15VDC TA	56289	150D226X9015B2
A4CR1 A4CR2 A4CR3 A4CR4 A4CR5	1902-1217 1902-3208 1902-3208 1902-3234 1902-3234	8 1 3 3	5	DIODE-ZNR 6.2V 5% DO-4 PD=10W TC=+.035% DIODE-ZNR 15.4V 5% DO-35 PD=.4W TC=+.06% DIODE-ZNR 15.4V 5% DO-35 PD=.4W TC=+.06% DIODE 7NR 19.6V 5% DO-35 PD=.4W DIODE-ZNR 17.6V 5% DO-35 PD=.4W	28480 28480 28480 28480 28480	1902-1217 1902-3208 1902-3208 1902-3234 1902-3234
A4CR6 A4CR7 A4CR8 A4CR9 A4CR10	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025	2 2 2 2 2 2		DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-PWR REGT 100V 3A 200NS	28480 28480 28480 28480 03509	1901-0025 1901-0025 1931-0025 1901-0025 A115A
A4CR11 A4CR12 A4CR13 A4CR14 A4CR15	1901-0691 1901-0691 1901-0691 1901-0691 1901-0691	8 8 8		DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS	03508 03508 03508 03508 03508	A115A A115A A115A A115A A115A
A4CR16 A4CR17 A4CR18 A4CR19 A4CR20	1901-0691 1901-0691 1901-0691 1901-0691 1901-0969	B B B B		DIODE-PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE PWR RECT 100V 3A 200NS DIODE-PWR RECT 100V 3A 200NS DIODE-POWER RECT.	03508 03508 03508 03508 28490	A115A A115A A115A A115A 1901-0969
A4CR21 A4CR22 A4CR23 A4CR24 A4CR25	1901-0969 1902-3182 1901-0025 1901-0025 1902-3203	3 0 2 2 6	1	DIODE-POWER RECT. DIODE-ZNR 12.19 5% DU-35 PD=.4W DIODE-GEN PPP 100V 200MA DO-7 DIODE-GEN PPP 100V 200MA TO-7 DIODE-ZNR 14.7V 5% DO-35 PD=.4W	28480 28480 28480 28480 28480	1701-0767 1902-3182 1901-0025 1901-0025 1902-3203
A4CR26 A4CR27 A4CR28 A4CR29 A4CR30	1901-0025 1901-0025 1902-0555 1901-0025 1901-0025	2522	i	DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-ZNR 13V 5% PD=1W TR=SUA DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7	28480 28480 20480 28480 28480	1901-0025 1901-0025 1902-0555 1901-0025 1901-0025

See introduction to this section for ordering information *Indicates factory selected value